Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a5, author = {S. I. Noskov}, title = {Compromise {Pareto's} evaluation of parameters linear regression}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {70--78}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a5/} }
S. I. Noskov. Compromise Pareto's evaluation of parameters linear regression. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 70-78. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a5/
[1] Norman R., Draper, Harry Smith. Applied Regression Analysis, 3rd Ed., John Wiley Sons, Inc., 1998, 736 pp. | MR
[2] E. Forster, B. Ronz, Methods of Correlation and Regression Analysis, Finansy i statistika Publ., M., 1983, 304 pp.
[3] S. G. Radchenko, Metodologiya regressionnogo analiza, Kornijchuk, K., 2011, 376 pp.
[4] S. A. Ajvazyan, Prikladnaya statistika i osnovy ekonometriki, Yuniti, M., 2001, 432 pp.
[5] Z. Brandt, Analiz dannyh, Mir, M., 2003, 213 pp.
[6] https://soft.mydiv.net/win/download-gretl.html
[7] E. Z. Demidenko, Linejnaya i nelinejnaya regressii, Finansy i statistika, M., 1981, 304 pp. | MR
[8] S. I. Noskov, Tekhnologiya modelirovaniya ob'ektov s nestabil'nym funkcionirovaniem i neopredelennost'yu v dannyh, Oblinformpechat', Irkutsk, 1996, 320 pp.
[9] S. I. Noskov, Metodi modelirovaniya obektov s nestabilnim funkcionirovaniem i neopredelennostyu v dannish, dis. dokt. teh. nauk, NGU, Novosibirsk, 1994
[10] S. I. Noskov, “L-mnozhestvo v mnogokriterial'noj zadache ocenivaniya parametrov regressionnyh uravnenij”, Informacionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnyh sistem, 2004, no. 1, 64–71
[11] S. I. Noskov, A. V. Baenhaeva, “Mnozhestvennoe ocenivanie parametrov linejnogo regressionnogo uravneniya”, Sovrem. tekhnologii. Sist. analiz. Modelir., 2016, no. 3, 133–138
[12] G. K. Kamenev, “Multicriteria Identification Sets Method”, Computational Mathematics and Mathematical Physics, 56:11 (2016), 1843–1858 | DOI | MR | Zbl
[13] G. K. Kamenev, “A Multicriteria Method for Identification and Forecasting”, Mathematical Models and Computer Simulations, 10:2 (2018), 154–163 | DOI | MR | Zbl
[14] A. V. Lakeev, S. I. Noskov, “Metod naimen'shih modulej dlya linejnoj regressii. Chislo nulevyh oshibok approksimacii”, Sovrem. tekhnologii. Sistemn. analiz. Modelir., 2012, no. 2, 48–50
[15] L. Yu, M. Zeleny, “The set of all nondoinated solutions in linear cases and multicriteria simplex method”, J. of Math. Anal. and Applic., 49:2 (1975), 430–468 | DOI | MR | Zbl
[16] A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, O. L. Chernih, Kompyuter i poisk kompromissa. Metod dostijimih celei, Nauka, M., 1997, 239 pp. | MR
[17] A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Appl. Optimization, 89, Kluwer Acad. Publ., Boston–Dordrecht–New York–London, 2004, 310 pp. | DOI | MR | Zbl
[18] P. Harold Benson, “An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem”, Journal of Global Optimization, 13 (1998), 1–24 | DOI | MR | Zbl
[19] Andreas Lohne, Vector Optimization with Infimum and Supremum, Springer Science Business Media, 2011, 206 pp. | MR | Zbl
[20] A. V. Lotov, I. I. Pospelova, Konspekt lekcii po teorii i metodam mnogokriterialnoi optimizacii, M., 2005
[21] A. V. Baenhaeva, M. P. Bazilevskij, S. I. Noskov, “Programmnyj kompleks mnozhestvennogo ocenivaniya regressionnyh modelej”, Informacionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnyh sistem, 2016, no. 17, 38–44
[22] S. A. Ajvazyan, I. S. Enyukov, L. D. Meshalkin, Prikladnaya statistika. Osnovy modelirovaniya i pervichnaya obrabotka dannyh, Finansy i statistika, M., 1983, 472 pp. | MR