Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a3, author = {V. V. Vorobyeva and E. M. Volodin}, title = {Experimental studies of seasonal weather predictability based on the {INM} {RAS} climate model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {47--58}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a3/} }
TY - JOUR AU - V. V. Vorobyeva AU - E. M. Volodin TI - Experimental studies of seasonal weather predictability based on the INM RAS climate model JO - Matematičeskoe modelirovanie PY - 2020 SP - 47 EP - 58 VL - 32 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a3/ LA - ru ID - MM_2020_32_11_a3 ER -
V. V. Vorobyeva; E. M. Volodin. Experimental studies of seasonal weather predictability based on the INM RAS climate model. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 47-58. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a3/
[1] B. Hoskins, “The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science”, Quarterly Journal of the Royal Meteorological Society, 139:672 (2013), 573–584 | DOI
[2] M. A. Tolstykh, Globalnaia polulagranzheva model chislennogo prognoza pogody, OAO FOP, M.–Obninsk, 2010, 111 pp.
[3] B. E. Shneerov, V. P. Meleshko i dr., “Sovremennaia versiia globalnoi modeli obshchei tsirkuliatsii atmosfery GGO (Versia MGO-2)”, Trudy GGO, 2001, no. 550, 3–43
[4] A. V. Murav'ev, V. D. Kaznacheeva, E. N. Kruglova, I. A. Kulikova, “Long-Term Forecasting of Anomalous Synoptic. Part I. Major Construction and Technological Charac-teristics of a Long-Term Dynamic-Statistical Weather Forecast Scheme”, Russ. Meteorol. Hydrol., 24:3 (1999), 18–24
[5] D. B. Kiktev, V. M. Khan, V. N. Kryzhov, R. B. Zaripov, E. N. Kruglova, I. A. Kulikova, V. A. Tishchenko, “Tekhnologiia vypuska dolgosrochnykh prognozov severo-evraziiskogo klimaticheskogo tsentra (SEAKTS)”, Trudy gidrometeorologicheskogo nauchno-issledovatelskogo tsentra RF, 2015, no. 358, 36–58
[6] D. B. Kiktev, M. A. Tolstykh, R. B. Zaripov i dr., Sovmestnye ispytaniia tekhnologii globalnogo sezonnogo prognoza na osnove modelei Gidromettsentra Rossii i GGO, Inf. sb. Rezultaty ispytaniia novykh i usovershenstvovannykh tekhnologii, modelei i metodov gidrometeorologicheskikh prognozov, 38, eds. G.K. Veselova i dr., IG SOTSIN, M.–Obninsk, 2011, 117 pp.
[7] E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, N. G. Yakovlev, “Simulation of the present-day climate with the climate model INMCM5”, Clim. Dyn, 49:11-12 (2017), 3715–3734 | DOI | MR
[8] F. Molteni, T. Stockdale, M. Balmaseda et al., “The new ECMWF seasonal forecast system (System 4)”, ECMWF Technical Memorandum, 2011, no. 656, 49
[9] T. Stockdale, S. Johnson, L. Ferranti et al, “ECMWF's new long-range forecasting system SEAS5”, ECMWF Newsletter, 2018, no. 154, 15–20
[10] H. Du, F. J. Doblas-Reyes, J. García-Serrano, V. Guémas, Y. Soufflet, B. Wouters, “Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations”, Clim. Dyn., 39:7-8 (2012), 2013–2023 | DOI
[11] J. A. Carton, G. A. Chepurin, L. Chen, “SODA3: A New Ocean Climate Reanalysis”, J. Climate, 31:17 (2018), 6967–6983 | DOI