Vlasov equation for phonons and its macroscopic consequences
Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 16-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Amendments are obtained to the harmonic approximation for the first order of the hyperelasticity theory in the relaxation approximation for a cubic crystal. The Vlasov equation is constructed for a collisionless phonon gas in a self-consistent deformation field. Collisions are considered in the approximation of relaxation to the equilibrium distribution. It is shown that the equations of thermo-elasticity are valid in the thermodynamic limit for the hydrodynamics of a phonon gas. The connection of the kinetic model with the equations of Cattaneo, Guyer-Crumhansl and thermoelasticity in the Bio form is considered.
Keywords: crystal, deformation, thermoelasticity.
Mots-clés : phonon, Vlasov equation
@article{MM_2020_32_11_a1,
     author = {Yu. A. Volkov and A. S. Dmitriev and M. B. Markov},
     title = {Vlasov equation for phonons and its macroscopic consequences},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/}
}
TY  - JOUR
AU  - Yu. A. Volkov
AU  - A. S. Dmitriev
AU  - M. B. Markov
TI  - Vlasov equation for phonons and its macroscopic consequences
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 16
EP  - 28
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/
LA  - ru
ID  - MM_2020_32_11_a1
ER  - 
%0 Journal Article
%A Yu. A. Volkov
%A A. S. Dmitriev
%A M. B. Markov
%T Vlasov equation for phonons and its macroscopic consequences
%J Matematičeskoe modelirovanie
%D 2020
%P 16-28
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/
%G ru
%F MM_2020_32_11_a1
Yu. A. Volkov; A. S. Dmitriev; M. B. Markov. Vlasov equation for phonons and its macroscopic consequences. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 16-28. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/