Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a1, author = {Yu. A. Volkov and A. S. Dmitriev and M. B. Markov}, title = {Vlasov equation for phonons and its macroscopic consequences}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {16--28}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/} }
TY - JOUR AU - Yu. A. Volkov AU - A. S. Dmitriev AU - M. B. Markov TI - Vlasov equation for phonons and its macroscopic consequences JO - Matematičeskoe modelirovanie PY - 2020 SP - 16 EP - 28 VL - 32 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/ LA - ru ID - MM_2020_32_11_a1 ER -
Yu. A. Volkov; A. S. Dmitriev; M. B. Markov. Vlasov equation for phonons and its macroscopic consequences. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 16-28. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/
[1] R. E. Peierls, Quantum Theory of Solids, Clarendon Press, Oxford, 1955
[2] P. G. Klemens, Thermal conductivity and lattice vibration modes, Encyclopedia of Physics, 14, Springer-Verlag, Berlin, 1956, 198 pp. | MR
[3] J. Callaway, “Model for lattice thermal conductivity at low temperatures”, Phys. Rev., 113:3 (1959), 1046–1051 | DOI | Zbl
[4] M. G. Holland, “Analysis of lattice thermal conductivity”, Phys. Rev., 132:6 (1963), 2461–2471 | DOI
[5] A. A. Vlasov, Nelokalnaia statisticheskaia mekhanika, Nauka, M., 1978, 264 pp.
[6] A. S. Dmitriev, Vvedenie v nanoteplofiziku, Binom, Laboratoriia znanii, M., 2015, 790 pp.
[7] A. J. Minnich, “Advances in the measurement and computation of thermal phonon transport properties”, J. Phys.: Condens. Matter, 27 (2015), 053202, 21 pp. | DOI
[8] Yee Kan Ko, D. G. Cahill, Bo Sun, “Nonlocal theory for heat transport at high frequencies”, Phys. Rev. B, 90 (2014), 11, 205412 pp.
[9] A. J. Minnich, G. Chen, S. Mansoor, B. S. Yilbas, “Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation”, Phys. Rev. B, 84 (2011), 8, 235207 pp. | DOI
[10] S. Mazumder, A. Majumdar, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization”, ASME J. Heat Transfer, 123 (2001), 749–759 | DOI
[11] M. A. Biot, “Thermoelasticity and Irreversible Thermodynamics”, J. Appl. Phys., 27:3 (1956), 240–253 | DOI | MR | Zbl
[12] W. Nowacki, Thermoelasticity, Pergamon Press, New-York, 1986, 578 pp. | MR | Zbl
[13] G. Leibfried, N. Breuer, Point Defects in Metals, Springer-Verlag, Berlin, 1978
[14] Y. A. Volkov, F. N. Voronin, M. B. Markov, “The Vlasov approach in phonon dynamics”, KIAM Preprint, 2015, 114, 24 pp.
[15] Y. A. Volkov, M. B. Markov, “Kinetic equations for phonon gas”, KIAM Preprint, 2019, 083, 15 pp.
[16] C. Kittel, Introduction to Solid State Physics, 8 Edition, John Wiley and Sons, Inc., 2005
[17] P. N. Keating, “Theory of the third-order elastic constants of diamond-like crystals”, Phys. Rev., 149:2 (1966), 674–678 | DOI
[18] J. Philip, M. A. Breazeale, “Temperature variation of some combinations of thirdorder elastic constants of silicon between 300 and 3K”, J. Appl. Phys., 52 (1981), 3383–3387 | DOI
[19] J. A. Reissland, The Physics of Phonons, John Wiley and Sons Ltd, New-York, 1973
[20] I. M. Lifshits, “O postroenii tenzora Grina dlia osnovnogo uravneniia teorii uprugosti v sluchae neogranichennoi uprugoanizotropnoi sredy”, Izbrannye trudy. Fizika realnykh kristallov i neuporiadochennykh system, Nauka, M., 1987, 349
[21] A. Ward, D. A. Broido, “Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge”, Phys. Rev. B, 81 (2010), 085205, 5 pp. | DOI
[22] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter, Birkhauser, Basel, 2005 | MR | Zbl
[23] R. A. Guyer, J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation”, Phys. Rev., 148 (1966), 766–778 | DOI
[24] A. V. Berezin, Yu. A. Volkov, M. B. Markov, I. A. Tarakanov, “Simulation of the Electron-Phonon Interaction in Silicon”, Math. Models Comp. Simul., 11:4 (2019), 542–550 | DOI | MR