Vlasov equation for phonons and its macroscopic consequences
Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Amendments are obtained to the harmonic approximation for the first order of the hyperelasticity theory in the relaxation approximation for a cubic crystal. The Vlasov equation is constructed for a collisionless phonon gas in a self-consistent deformation field. Collisions are considered in the approximation of relaxation to the equilibrium distribution. It is shown that the equations of thermo-elasticity are valid in the thermodynamic limit for the hydrodynamics of a phonon gas. The connection of the kinetic model with the equations of Cattaneo, Guyer-Crumhansl and thermoelasticity in the Bio form is considered.
Keywords: crystal, deformation, thermoelasticity.
Mots-clés : phonon, Vlasov equation
@article{MM_2020_32_11_a1,
     author = {Yu. A. Volkov and A. S. Dmitriev and M. B. Markov},
     title = {Vlasov equation for phonons and its macroscopic consequences},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/}
}
TY  - JOUR
AU  - Yu. A. Volkov
AU  - A. S. Dmitriev
AU  - M. B. Markov
TI  - Vlasov equation for phonons and its macroscopic consequences
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 16
EP  - 28
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/
LA  - ru
ID  - MM_2020_32_11_a1
ER  - 
%0 Journal Article
%A Yu. A. Volkov
%A A. S. Dmitriev
%A M. B. Markov
%T Vlasov equation for phonons and its macroscopic consequences
%J Matematičeskoe modelirovanie
%D 2020
%P 16-28
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/
%G ru
%F MM_2020_32_11_a1
Yu. A. Volkov; A. S. Dmitriev; M. B. Markov. Vlasov equation for phonons and its macroscopic consequences. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 16-28. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a1/

[1] R. E. Peierls, Quantum Theory of Solids, Clarendon Press, Oxford, 1955

[2] P. G. Klemens, Thermal conductivity and lattice vibration modes, Encyclopedia of Physics, 14, Springer-Verlag, Berlin, 1956, 198 pp. | MR

[3] J. Callaway, “Model for lattice thermal conductivity at low temperatures”, Phys. Rev., 113:3 (1959), 1046–1051 | DOI | Zbl

[4] M. G. Holland, “Analysis of lattice thermal conductivity”, Phys. Rev., 132:6 (1963), 2461–2471 | DOI

[5] A. A. Vlasov, Nelokalnaia statisticheskaia mekhanika, Nauka, M., 1978, 264 pp.

[6] A. S. Dmitriev, Vvedenie v nanoteplofiziku, Binom, Laboratoriia znanii, M., 2015, 790 pp.

[7] A. J. Minnich, “Advances in the measurement and computation of thermal phonon transport properties”, J. Phys.: Condens. Matter, 27 (2015), 053202, 21 pp. | DOI

[8] Yee Kan Ko, D. G. Cahill, Bo Sun, “Nonlocal theory for heat transport at high frequencies”, Phys. Rev. B, 90 (2014), 11, 205412 pp.

[9] A. J. Minnich, G. Chen, S. Mansoor, B. S. Yilbas, “Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation”, Phys. Rev. B, 84 (2011), 8, 235207 pp. | DOI

[10] S. Mazumder, A. Majumdar, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization”, ASME J. Heat Transfer, 123 (2001), 749–759 | DOI

[11] M. A. Biot, “Thermoelasticity and Irreversible Thermodynamics”, J. Appl. Phys., 27:3 (1956), 240–253 | DOI | MR | Zbl

[12] W. Nowacki, Thermoelasticity, Pergamon Press, New-York, 1986, 578 pp. | MR | Zbl

[13] G. Leibfried, N. Breuer, Point Defects in Metals, Springer-Verlag, Berlin, 1978

[14] Y. A. Volkov, F. N. Voronin, M. B. Markov, “The Vlasov approach in phonon dynamics”, KIAM Preprint, 2015, 114, 24 pp.

[15] Y. A. Volkov, M. B. Markov, “Kinetic equations for phonon gas”, KIAM Preprint, 2019, 083, 15 pp.

[16] C. Kittel, Introduction to Solid State Physics, 8 Edition, John Wiley and Sons, Inc., 2005

[17] P. N. Keating, “Theory of the third-order elastic constants of diamond-like crystals”, Phys. Rev., 149:2 (1966), 674–678 | DOI

[18] J. Philip, M. A. Breazeale, “Temperature variation of some combinations of thirdorder elastic constants of silicon between 300 and 3K”, J. Appl. Phys., 52 (1981), 3383–3387 | DOI

[19] J. A. Reissland, The Physics of Phonons, John Wiley and Sons Ltd, New-York, 1973

[20] I. M. Lifshits, “O postroenii tenzora Grina dlia osnovnogo uravneniia teorii uprugosti v sluchae neogranichennoi uprugoanizotropnoi sredy”, Izbrannye trudy. Fizika realnykh kristallov i neuporiadochennykh system, Nauka, M., 1987, 349

[21] A. Ward, D. A. Broido, “Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge”, Phys. Rev. B, 81 (2010), 085205, 5 pp. | DOI

[22] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter, Birkhauser, Basel, 2005 | MR | Zbl

[23] R. A. Guyer, J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation”, Phys. Rev., 148 (1966), 766–778 | DOI

[24] A. V. Berezin, Yu. A. Volkov, M. B. Markov, I. A. Tarakanov, “Simulation of the Electron-Phonon Interaction in Silicon”, Math. Models Comp. Simul., 11:4 (2019), 542–550 | DOI | MR