Mots-clés : eikonal, adiabatic invariant.
@article{MM_2020_32_11_a0,
author = {A. V. Baev},
title = {On the solution of an inverse problem for equations of shallow water in a pool with variable depth},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {3--15},
year = {2020},
volume = {32},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/}
}
A. V. Baev. On the solution of an inverse problem for equations of shallow water in a pool with variable depth. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/
[1] A. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Arizona, 1985, 246 pp. | MR | Zbl
[2] G.B. Whitham, Linear and nonlinear waves, A Wiley-Interscience publication, NY, 1974, 636 pp. | MR | Zbl
[3] D. J. Korteveg, G. de Vries, “On the change of form of long waves advancing in a rectangu-lar channel, and on a new type of long stationary waves”, Phil. Mag., 39:5 (1895), 422–443 | DOI | MR
[4] S. V. Bogomolov, E. V. Zakharov, S. V. Zerkal, “Modelirovanie voln na melkoi vode metodom chastits”, Matem. modelirovanie, 14:3 (2002), 103–116 | MR | Zbl
[5] Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms”, Theoret. and Math. Phys., 178:3 (2014), 278–298 | DOI | MR | Zbl
[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform asymptotics of the boundary values of the solution in a linear problem on the run-up of waves on a shallow beach”, Math. Notes, 101:5 (2017), 802–814 | DOI | MR | Zbl
[7] A. V. Aksenov, S. Yu. Dobrokhotov, K. P. Druzhkov, “Exact step-like solutions of one-dimensional shallow-water equations over a sloping bottom”, Math. Notes, 104:6 (2018), 915–921 | DOI | MR | Zbl
[8] F.L. Chernous'ko (red.), Aktual'nye problemy mekhaniki, Nauka, M., 2015, 510 pp.
[9] S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, B. Volkov, “Explicit asymptotics for tsunami waves in framework of the piston model”, Russ. J. Earth Sci., 8:4 (2006), ES4003, 12 pp. | DOI | MR
[10] L. D. Landau, E. M. Lifshits, Mechanics, v. 1, Elsevier, Oxford, 1969, 170 pp. | MR | MR
[11] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer, Berlin, 2006, 518 pp. | MR | Zbl
[12] A. V. Baev, “On an inverse problem for the KdV equation with variable coefficient”, Math. Notes, 106:5 (2019), 145–149 | MR | Zbl