On the solution of an inverse problem for equations of shallow water in a pool with variable depth
Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of propagation of small-amplitude waves on the surface of shallow water in a reservoir with variable depth. From the system of shallow water equations, we derive the Korteweg-de Vries equation (KdV) with a variable coefficient that takes into account both the bottom profile and the geometric divergence of the waves. The inverse problem, which consists of determining the variable profile of the bottom by the period and amplitude of stationary waves is posed and solved within the adiabatic approximation. It is shown that taking into account the geometric divergence of waves significantly affects the result of solving the inverse problem.
Keywords: shallow water, KdV equation, geometric divergence, Hamiltonian formalism, stationary oscillations
Mots-clés : eikonal, adiabatic invariant.
@article{MM_2020_32_11_a0,
     author = {A. V. Baev},
     title = {On the solution of an inverse problem for equations of shallow water in a pool with variable depth},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - On the solution of an inverse problem for equations of shallow water in a pool with variable depth
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 15
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/
LA  - ru
ID  - MM_2020_32_11_a0
ER  - 
%0 Journal Article
%A A. V. Baev
%T On the solution of an inverse problem for equations of shallow water in a pool with variable depth
%J Matematičeskoe modelirovanie
%D 2020
%P 3-15
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/
%G ru
%F MM_2020_32_11_a0
A. V. Baev. On the solution of an inverse problem for equations of shallow water in a pool with variable depth. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a0/

[1] A. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Arizona, 1985, 246 pp. | MR | Zbl

[2] G.B. Whitham, Linear and nonlinear waves, A Wiley-Interscience publication, NY, 1974, 636 pp. | MR | Zbl

[3] D. J. Korteveg, G. de Vries, “On the change of form of long waves advancing in a rectangu-lar channel, and on a new type of long stationary waves”, Phil. Mag., 39:5 (1895), 422–443 | DOI | MR

[4] S. V. Bogomolov, E. V. Zakharov, S. V. Zerkal, “Modelirovanie voln na melkoi vode metodom chastits”, Matem. modelirovanie, 14:3 (2002), 103–116 | MR | Zbl

[5] Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms”, Theoret. and Math. Phys., 178:3 (2014), 278–298 | DOI | MR | Zbl

[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform asymptotics of the boundary values of the solution in a linear problem on the run-up of waves on a shallow beach”, Math. Notes, 101:5 (2017), 802–814 | DOI | MR | Zbl

[7] A. V. Aksenov, S. Yu. Dobrokhotov, K. P. Druzhkov, “Exact step-like solutions of one-dimensional shallow-water equations over a sloping bottom”, Math. Notes, 104:6 (2018), 915–921 | DOI | MR | Zbl

[8] F.L. Chernous'ko (red.), Aktual'nye problemy mekhaniki, Nauka, M., 2015, 510 pp.

[9] S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, B. Volkov, “Explicit asymptotics for tsunami waves in framework of the piston model”, Russ. J. Earth Sci., 8:4 (2006), ES4003, 12 pp. | DOI | MR

[10] L. D. Landau, E. M. Lifshits, Mechanics, v. 1, Elsevier, Oxford, 1969, 170 pp. | MR | MR

[11] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer, Berlin, 2006, 518 pp. | MR | Zbl

[12] A. V. Baev, “On an inverse problem for the KdV equation with variable coefficient”, Math. Notes, 106:5 (2019), 145–149 | MR | Zbl