Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_10_a8, author = {D. Ya. Sukhanov and A. E. Kuzovova}, title = {Modeling wave processes by the particle dynamics method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {119--134}, publisher = {mathdoc}, volume = {32}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a8/} }
D. Ya. Sukhanov; A. E. Kuzovova. Modeling wave processes by the particle dynamics method. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 119-134. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a8/
[1] S. L. Ilmenkov, A. A. Kleshchev, A. S. Klimenkov, “The Green's Function Method in the Problem of Sound Diffraction by an Elastic Shell of Noncanonical Shape”, Acoustical Physics, 60:6 (2014), 617–623 | DOI | DOI
[2] S. E. Kireev, “Parallelnaia realizatsiia metoda chastits v iacheikakh dlia modelirovaniia zadach gravitatsionnoi kosmodinamiki”, Avtometriia, 42:3 (2006), 32–39 | MR
[3] G. Riccardi, De Bernardis, “Numerical simulations of the dynamics and the acoustics of an axisymmetric bubble rising in an inviscid liquid”, European J. of Mechanics, B/Fluids, 2020, 121–140 | DOI | MR | Zbl
[4] T. Cavalieri, J. Boulvert, L. Schwan, G. Gabard, V. Romero-Garcìa, J. P. Groby, M. Escouflaire, J. Mardjono, “Acoustic wave propagation in effective graded fully anisotropic fluid layers”, J. of the Acoustical Society of America, 146:5 (2019), 3400–3408 | DOI | MR
[5] A. N. Tikhonov, A. A. Samarskii, Uravneniia matematicheskoi fiziki, Nauka, M., 1977 | MR
[6] B. Gilvey, J. Trevelyan, G. Hattori, “Singular enrichment functions for Helmholtz scattering at corner locations using the boundary element method”, Intern. J. for Numerical Methods in Eng., 121:3 (2020), 519–533 | DOI
[7] S. G. Golovina, E. V. Zakharov, “Chislennyi metod resheniia obratnoi zadachi dlia volnovogo uravneniia v srede s lokalnoi neodnorodnostiu”, Vestnik Moskovskogo Universiteta. Seriia 15. Vychislitelnaia matematika i kibernetika, 2017, no. 4, 22–27 | Zbl
[8] M. Takemura, M. Toyoda, “Analysis of the oblique incidence of periodic structures in a sound field by the finite-difference time-domain method”, Applied Acoustics, 167 (2020), 107357, 10 pp. | DOI
[9] V. A. Barkhatov, “Reshenie volnovykh uravnenii metodom konechnykh raznostei vo vremennoi oblasti. Dvumernaia zadacha. Osnovnye sootnosheniia”, Defektoskopiia, 2007, no. 9, 54–70
[10] D. A. Avdeev, V. I. Rimliand, “Trekhmernoe modelirovanie akusticheskogo polia metodom konechnykh raznostei vo vremennoi oblasti”, Vestnik TOGU, 2016
[11] ZH. O. Dombrovskaia, “Metod konechnykh raznostei vo vremennoi oblasti dlia kusocho-odnorodnykh dielektricheskikh sred”, Modelirovanie i analiz informatsionnykh system, 23:5 (2016), 539–547 | MR
[12] V. Jagota, A. Preet Singh Sethi, K. Kumar, “Finite Element Method: An Overview”, Walailak Journal. Sci. and Technology, 10:1 (2013), 1–8
[13] A. Di Vincenzo, M. Floriano, “Realistic Implementation of the Particle Model for the Visualization of Nanoparticle Precipitation and Growth”, J. of Chemical Educ., 96:8 (2019), 1654–1662 | DOI
[14] S. Hu, R. Fu, “Expanding the flexibility of dynamics simulation on different size particle-particle interactions by dielectrophoresis”, J. of Biological Physics, 45:1 (2019), 45–62 | DOI
[15] A. A. Selezenev, Osnovy metoda molekuliarnoi dinamiki, Uch. metod. pos., SarFTI, Sarov, 2017, 72 pp.
[16] S. S. Sharma, B. B. Sharma, A. Parashar, “Mechanical and fracture behavior of water submerged grapheme”, Journal of Applied Physics, 125:21 (2019), 1–8 | DOI
[17] V. D. Natsik, S. N. Smirnov, V. I. Belan, “Computer modeling and analytical description of structural defects in two-dimensional crystals of bounded sizes: Free boundary, dislocations, and crowdions”, Low Temperature Physics, 44:7 (2018), 688–695
[18] S. Starikov, V. Tseplyaev, “Two-scale simulation of plasticity in molybdenum: Combination of atomistic simulation and dislocation dynamics with non-linear mobility function”, Comp. Materials Sci., 179 (2020), 1–14
[19] B. Zhang, L. Zhou, Yu Sun, W. He, Y. Chen, “Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension”, Molecular Simul., 44:15 (2018), 1252–1260 | DOI
[20] J. Li, B. Lu, H. Zhou, C. Tian, Y. Xian, G. Hu, R. Xia, “Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: Grain-size and temperature effects”, Phys. Letters A, 383:16 (2019), 1922–1928 | DOI
[21] S. L. Duncan, I. S. Dalal, R. G. Larson, “Molecular dynamics simulation of phase transitions in model lung surfactant monolayers”, Biochimica et Biophysica Acta (BBA) Biomembranes, 1808:10 (2011), 2450–2465
[22] V. L. Kovalev, V. IU. Sazonova, A. N. IAkunchikov, “Modelirovanie vzaimodeistviia strui razrezhennogo gaza s pregradoi metodami molekuliarnoi dinamiki”, Vest. Mosk. universiteta. Ser. 1, Matematika, Mekhanika, 2008, no. 2, 56–58 | Zbl
[23] V. V. Zubkov, P. V. Komarov, “Izuchenie struktury ultratonkogo sloia dikhlormetana na ploskoi grafitovoi poverkhnosti metodami teorii funktsionala plotnosti I molekuliarnoi dinamiki”, Vest. Tverskogo gos. univ., ser.: KHimiia, 2010, no. 10, 37–46
[24] D. Y. Lenev, G. E. Norman, “Molecular Modeling of the Thermal Accommodation of Argon Atoms on Clusters of Iron Atoms”, High Temperature, 57:4 (2019), 490–497
[25] V. L. Malyshev, D. F. Marin, E. F. Moiseeva, N. A. Gumerov, I. SH. Akhatov, “Issledovanie prochnosti zhidkosti na razryv metodami molekuliarnoi dinamiki”, Teplofizika vysokikh temperatur, 53:3 (2015), 423
[26] V. A. Balashov, “Direct Simulation of Moderately Rarefied Gas Flows in Two-Dimensional Model Porous Media”, Math. Mod. and Comp. Simul., 10:4 (2018), 483–493 | MR
[27] S. Marburg, Six boundary elements per wavelength: Is that enough?, J. of Computational Acoustics, 10:1 (2002), 25–51 | DOI | MR
[28] V. M. Verzhbitskii, Osnovy chislennykh metodov, Uch. dlia vuzov, Vysshaia shkola, M., 2002, 840 pp.
[29] A. M. Krivtsov, Deformirovanie i razrushenie tverdykh tel s mikrostrukturoi, Fizmatlit, M., 2007, 304 pp.