A direct solution for the central projection camera pose estimation by four control points
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 91-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Perspective $n$-point Problem (PnP) is the problem of finding the position and orientation of a central projection camera model by given spatial coordinates of the points and by their corresponding coordinates on the image. Due to the existing robotics and machine vision applications direct non-iterative methods of solution are of interest. The known general method to the direct non-iterative solution for the PnP problem in the case of four control points ($n=4$) uses the relinearization and seems to be rather complex. This paper presents an alternative more simple solution for the problem in the case $n=4$. The proposed method reduces computing requirements for the problem solution. In the case of more control points the solution obtained for four points can be used as an initial approximation for Gauss–Newton iterations or in RANSAC calculation scheme.
Mots-clés : external orientation, pose estimation, P4P.
Keywords: PnP
@article{MM_2020_32_10_a6,
     author = {N. D. Beklemishev},
     title = {A direct solution for the central projection camera pose estimation by four control points},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a6/}
}
TY  - JOUR
AU  - N. D. Beklemishev
TI  - A direct solution for the central projection camera pose estimation by four control points
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 91
EP  - 104
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a6/
LA  - ru
ID  - MM_2020_32_10_a6
ER  - 
%0 Journal Article
%A N. D. Beklemishev
%T A direct solution for the central projection camera pose estimation by four control points
%J Matematičeskoe modelirovanie
%D 2020
%P 91-104
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a6/
%G ru
%F MM_2020_32_10_a6
N. D. Beklemishev. A direct solution for the central projection camera pose estimation by four control points. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 91-104. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a6/

[1] A. N. Lobanov, Fotogrammetriia, Nedra, M., 1984, 552 pp.

[2] V. Lepetit, F. Moreno-Noguer, P. Fua, “EPnP: An Accurate O(n) Solution to the PnP Problem”, ICCV, 2007, 1–8

[3] X. S. Gao, X. R. Hou, J. Tang, H. F. Cheng, “Complete solution classification for the perspective-three-point problem”, IEEE Trans. Pattern Anal. Mach. Intel, 25:8 (2003), 930–943 | DOI

[4] M. A. Abidi, T. Chandra, “A New Efficient and Direct Solution for Pose Estimation Using Quadrangular Targets: Algorithm and Evaluation”, IEEE Trans. Pattern Anal. Mach. Intel, 17:5 (1995), 534–538

[5] C. Su, Y. Xu, H. Li, S. Liu, “Application of Wu's method in computer animation”, The Fifth International Conference on CAD/CG, v. 1, 1997, 211–215

[6] M. Persson, T. Piccini, R. Mester, M. Felsberg, “Robust stereo visual odometry from monocular techniques”, Intelligent Vehicles Symposium, IV 2015, v. 1, IEEE, 2015, 686–691

[7] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000, 655 pp. | MR | Zbl

[8] G. Golub, Ch. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore–London, 1996, 694 pp. | MR | Zbl

[9] M. Persson, K. Nordberg, “Lambda Twist: An Accurate Fast Robust Perspective Three Point (P3P) Solver”, Computer Vision–ECCV 2018, v. 4, 334–349

[10] M. A. Fischler, R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Comm. ACM, 24:6 (1981), 381–395 | MR

[11] R. Horaud, B. Conio, O. Leboulleux, B. Lacolle, “An Analytic Solution for the Perspective 4-Point Problem”, Comp. Vision Graphics and Image Processing, 47:1 (1989), 33–44 | DOI