Comparison of two model of aerodynamic drag used for ISS orbital motion prediction
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers an approach to approximating the sensor data of an autonomous navigation system installed on the Russian segment of the International Space Station based on application of a mathematical model of the orbital motion of a spacecraft, where aerodynamic drag forces are calculated using the calculation of the mid-section section using a geometric model of the outer surface. This approach was used to analyze these intervals up to ten days of flight of the International Space Station in January and June 2018. The paper presents the results of mathematical modeling using the described mathematical model and a standard mathematical model using a ballistic coefficient. The proposed mathematical model shows significantly better approximation indices.
Keywords: data approximation, aerodynamic drag, spacecraft, geometric model
Mots-clés : Levenberg–Marquardt method, International Space Station.
@article{MM_2020_32_10_a5,
     author = {Vas. V. Sazonov},
     title = {Comparison of two model of aerodynamic drag used for {ISS} orbital motion prediction},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a5/}
}
TY  - JOUR
AU  - Vas. V. Sazonov
TI  - Comparison of two model of aerodynamic drag used for ISS orbital motion prediction
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 77
EP  - 90
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a5/
LA  - ru
ID  - MM_2020_32_10_a5
ER  - 
%0 Journal Article
%A Vas. V. Sazonov
%T Comparison of two model of aerodynamic drag used for ISS orbital motion prediction
%J Matematičeskoe modelirovanie
%D 2020
%P 77-90
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a5/
%G ru
%F MM_2020_32_10_a5
Vas. V. Sazonov. Comparison of two model of aerodynamic drag used for ISS orbital motion prediction. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 77-90. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a5/

[1] E. P. Aksenov, Teoriia dvizheniia iskusstvennykh sputnikov Zemli, Nauka, M., 1977

[2] M. Y. Beliaev, V. V. Sazonov, D. N. Rulev, “Determination of Motion Parameters of ISS by Use of GPS Measurements”, Proc. of the 18th Int. Symp. on Space Flight Dynamics, ESA SP-548, Jointly organised by the German Space Operations Center of DLR and the European Space Operations Centre of ESA (11-15 Oct. 2004, Munich, Germany), 565

[3] I. K. Bazhinov, V. P. Gavrilov, V. D. Iastrebov i dr., Navigatsionnoe obespechenie poleta or-bitalnogo kompleksa “Saliut-6” “Soiuz”–“Progress”, Nauka, M., 1985

[4] http://celestrak.com/

[5] V. V. Beletskii, Dvizhenie iskusstvennogo sputnika Zemli otnositelno tsentra mass, Nauka, M., 1965

[6] Vas. V. Sazonov, “Construction of interactive geometric model of outside surface of a spacecraft”, MM, 13:1 (2021) | Zbl

[7] ISS Flight rules, NASA Johnson space center, 2017

[8] J. R. Dormand, Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Boca Raton, 1996 | MR | Zbl

[9] Lanczos C., Applied Analysis, Prentice hall, 1956 | MR | Zbl

[10] Gill P., Murray W., Wright M., Practical optimization, Academic Press, 1981 | MR | MR | Zbl