Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_10_a2, author = {R. V. Zhalnin and V. F. Masyagin and E. E. Peskova and V. F. Tishkin}, title = {Modeling of {Richtmyer--Meshkov} instability development using the discontinuous {Galerkin} method and local-adaptive meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {34--46}, publisher = {mathdoc}, volume = {32}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/} }
TY - JOUR AU - R. V. Zhalnin AU - V. F. Masyagin AU - E. E. Peskova AU - V. F. Tishkin TI - Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes JO - Matematičeskoe modelirovanie PY - 2020 SP - 34 EP - 46 VL - 32 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/ LA - ru ID - MM_2020_32_10_a2 ER -
%0 Journal Article %A R. V. Zhalnin %A V. F. Masyagin %A E. E. Peskova %A V. F. Tishkin %T Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes %J Matematičeskoe modelirovanie %D 2020 %P 34-46 %V 32 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/ %G ru %F MM_2020_32_10_a2
R. V. Zhalnin; V. F. Masyagin; E. E. Peskova; V. F. Tishkin. Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 34-46. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/
[1] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Communications on Pure and Applied Mathematics, 13:2 (1960), 297–319 | DOI | MR
[2] E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Fluid Dynamics, 4:5 (1969), 101–104 | DOI
[3] M. Brouillette, “The Richtmyer-Meshkov instability”, Annual Review of Fluid Mechanics, 34 (2002), 445–468 | DOI | MR | Zbl
[4] Ye Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I”, Physics Reports, 720 (2017), 1–136 | MR | Zbl
[5] Ye Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II”, Physics Reports, 723 (2017), 1–160 | MR | Zbl
[6] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.
[7] B. Thornber, D. Drikakis, D. L. Youngs, R. J. R. Williams, “The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability”, J. of Fluid Mechanics, 654 (2010), 99–139 | Zbl
[8] O. Schilling, M. Latini, “High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data”, Acta Math. Sci, 30:2 (2010), 595–620 | DOI | MR | Zbl
[9] B. Thornber, D. Drikakis, D. L. Youngs, R. J. R. Williams, “Growth of a Richtmyer-Meshkov turbulent layer after reshock”, Physics of Fluids, 23:9 (2011), 095107 | DOI
[10] M. Hahn, D. Drikakis, D. L. Youngs, R. J. R. Williams, “Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow”, Physics of Fluids, 23:4 (2011), 046101 | DOI
[11] F. F. Grinstein, A. A. Gowardhan, A. J. Wachtor, “Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments”, Physics of Fluids, 23:3 (2011), 034106 | DOI
[12] S. Balasubramanian, G. C. Orlicz, K. P. Prestridge, B. J. Balakumar, “Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock”, Physics of Fluids, 24:3 (2012), 034103 | DOI
[13] B. J. Balakumar, G. C. Orlicz, J. R. Ristorcelli, S. Balasubramanian, K. P. Prestridge, C. D. Tomkins, “Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics”, Journal of Fluid Mechanics, 696 (2012), 67–93 | DOI | Zbl
[14] G. C. Orlicz, S. Balasubramanian, P. Vorobieff, K. P. Prestridge, “Mixing transition in a shocked variable-density flow”, Physics of Fluids, 27:11 (2015), 114102 | DOI
[15] M. Mohaghar, J. Carter, B. Musci, D. Reilly, J. McFarland, D. Ranjan, “Evaluation of turbulent mixing transition in a shock-driven variable-density flow”, J. of Fluid Mechanics, 831 (2017), 779–825 | MR
[16] D. T. Reese, A. M. Ames, C. D. Noble, J. G. Oakley, D. A. Rothamer, R. Bonazza, “Simultaneous direct measurements of concentration and velocity in the Richtmyer-Meshkov instability”, J. of Fluid Mechanics, 849 (2018), 541–575 | DOI | MR | Zbl
[17] D. J. Hill, C. Pantano, D. I. Pullin, “Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock”, J. of Fluid mechanics, 557 (2006), 29–61 | DOI | MR | Zbl
[18] M. Lombardini, D. J. Hill, D. I. Pullin, D. I. Meiron, “Atwood ratio dependence of Richtmyer-Meshkov ows under reshock conditions using large-eddy simulations”, J. of Fluid Mechanics, 670 (2011), 439–480 | DOI | Zbl
[19] M. Lombardini, D. I. Pullin, D. I. Meiron, “Transition to turbulence in shock-driven mixing: a Mach number study”, J. of Fluid Mechanics, 690 (2012), 203–226 | MR | Zbl
[20] V. K. Tritschler, B. J. Olson, S. K. Lele, S. Hickel, X. Y. Hu, N. A. Adams, “On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface”, J. of Fluid Mechanics, 755 (2014), 429–462 | DOI | MR
[21] A. Subramaniam, S. K. Lele, “Turbulence energetics in an inclined interface Richtmyer-Meshkov instability”, 10th International Symposium on Turbulence and Shear Flow Phenomena (International Symposium on Turbulence and Shear Flow Phenomena), 2017
[22] S. M. Garina, N. V. Zmitrenko, M. Ye. Ladonkina, I. G. Lebo, V. V. Nikishin, N. G. Proncheva, V. B. Rozanov, V. F. Tishkin, “Chislennoe modelirovanie i analiz kharakteristik turbulentnogo peremeshivaniia s pomoshchiu trekhmernogo koda NUT”, Mat. mod., 15:5 (2003), 3–11 | Zbl
[23] M. Lombardini, D. I. Pullin, D. I. Meiron, “Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth”, J. of Fluid Mech., 748 (2014), 85–112
[24] M. Lombardini, D. I. Pullin, D. I. Meiron, “Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics”, J. of Fluid Mechanics, 748, 113–142 | DOI | MR
[25] M. J. Berger, P. Colella, “Local adaptive mesh refinement for shock hydrodynamics”, J. Comp. Phys., 82:1 (1989), 64–84 | DOI | Zbl
[26] M. Berger, J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations”, J. of Comp. Physics, 53:3 (1984), 484–512 | DOI | MR | Zbl
[27] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky, I. S. Menshov, V. S. Nikitin, “Numerical simulation of the recirculation flow during the supersonic separation of moving bodies”, Mathematical Models and Computer Simulations, 12:3 (2020), 282–292 | MR
[28] A. L. Afendikov, A. E. Lutskii, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ia. V. Khankhasaeva, “Algoritm dinamicheskoi lokalnoi adaptatsii setok na osnove veivlet-analiza s ispolzovaniem metoda svobodnoi granitsy”, Preprinty IPM im. M.V. Keldysha, 2015, 094, 20 pp.
[29] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Mod. Comp. Sim., 6:4 (2014), 397–407 | MR | Zbl
[30] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[31] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comp. Math. and Math. Physics, 1:2 (1962), 304–320 | MR
[32] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | MR | Zbl
[33] E. F. Toro, M. Spruce, W. Speares, “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4 (1994), 25–34 | Zbl
[34] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, J. of Computational Physics, 77 (1988), 439–471 | MR | Zbl
[35] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper 89-0366, 1989
[36] N. V. Zmitrenko, M. Ye. Ladonkina, V. F. Tishkin, “Chislennoe issledovanie turbulentnogo peremeshivaniia dlia odnoi zadachi o razvitii neustoichivosti Rikhtmaiera-Meshkova”, VANT. Ser. mat. modelir. fiz. processov, 2004, no. 1 | Zbl
[37] V. S. Chevanin, “Chislennoe modelirovanie zadach turbulentnogo peremeshivaniia na osnove kvazimonotonnoi skhemy povyshennogo poriadka tochnosti”, Preprinty IPM im. M.V. Keldysha, 2011, 032
[38] F. Poggi, M. H. Thorembey, G. Rodriguez, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability”, Physics of Fluids, 10:11 (1998) | DOI