Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a numerical algorithm for solving equations of multicomponent gas dynamics using the discontinuous Galerkin method on local-adaptive grids. The numerical algorithm uses a data structure and a dynamic local grid adaptation algorithm from the p4est library. We use Lax–Friedrichs–Rusanov numerical and HLLC flows. To get rid of non-physical oscillations, the Barth–Jespersen limiter is applied. As a result of the study, a numerical simulation of the development of the Richtmyer–Meshkov instability was carried out, the results obtained were compared with experimental results and known numerical solutions of this problem. It is concluded that the calculated and experimental data are in good agreement. In the future, it is expected to study this process using a model that takes into account the phenomena of viscosity and thermal conductivity.
Keywords: turbulent mixing, Richtmyer–Meshkov instability, discontinuous Galerkin method, parallel computing, local-adaptive meshes
Mots-clés : p4est.
@article{MM_2020_32_10_a2,
     author = {R. V. Zhalnin and V. F. Masyagin and E. E. Peskova and V. F. Tishkin},
     title = {Modeling of {Richtmyer--Meshkov} instability development using the discontinuous {Galerkin} method and local-adaptive meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/}
}
TY  - JOUR
AU  - R. V. Zhalnin
AU  - V. F. Masyagin
AU  - E. E. Peskova
AU  - V. F. Tishkin
TI  - Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 34
EP  - 46
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/
LA  - ru
ID  - MM_2020_32_10_a2
ER  - 
%0 Journal Article
%A R. V. Zhalnin
%A V. F. Masyagin
%A E. E. Peskova
%A V. F. Tishkin
%T Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes
%J Matematičeskoe modelirovanie
%D 2020
%P 34-46
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/
%G ru
%F MM_2020_32_10_a2
R. V. Zhalnin; V. F. Masyagin; E. E. Peskova; V. F. Tishkin. Modeling of Richtmyer--Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 34-46. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a2/

[1] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Communications on Pure and Applied Mathematics, 13:2 (1960), 297–319 | DOI | MR

[2] E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Fluid Dynamics, 4:5 (1969), 101–104 | DOI

[3] M. Brouillette, “The Richtmyer-Meshkov instability”, Annual Review of Fluid Mechanics, 34 (2002), 445–468 | DOI | MR | Zbl

[4] Ye Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I”, Physics Reports, 720 (2017), 1–136 | MR | Zbl

[5] Ye Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II”, Physics Reports, 723 (2017), 1–160 | MR | Zbl

[6] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.

[7] B. Thornber, D. Drikakis, D. L. Youngs, R. J. R. Williams, “The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability”, J. of Fluid Mechanics, 654 (2010), 99–139 | Zbl

[8] O. Schilling, M. Latini, “High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data”, Acta Math. Sci, 30:2 (2010), 595–620 | DOI | MR | Zbl

[9] B. Thornber, D. Drikakis, D. L. Youngs, R. J. R. Williams, “Growth of a Richtmyer-Meshkov turbulent layer after reshock”, Physics of Fluids, 23:9 (2011), 095107 | DOI

[10] M. Hahn, D. Drikakis, D. L. Youngs, R. J. R. Williams, “Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow”, Physics of Fluids, 23:4 (2011), 046101 | DOI

[11] F. F. Grinstein, A. A. Gowardhan, A. J. Wachtor, “Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments”, Physics of Fluids, 23:3 (2011), 034106 | DOI

[12] S. Balasubramanian, G. C. Orlicz, K. P. Prestridge, B. J. Balakumar, “Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock”, Physics of Fluids, 24:3 (2012), 034103 | DOI

[13] B. J. Balakumar, G. C. Orlicz, J. R. Ristorcelli, S. Balasubramanian, K. P. Prestridge, C. D. Tomkins, “Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics”, Journal of Fluid Mechanics, 696 (2012), 67–93 | DOI | Zbl

[14] G. C. Orlicz, S. Balasubramanian, P. Vorobieff, K. P. Prestridge, “Mixing transition in a shocked variable-density flow”, Physics of Fluids, 27:11 (2015), 114102 | DOI

[15] M. Mohaghar, J. Carter, B. Musci, D. Reilly, J. McFarland, D. Ranjan, “Evaluation of turbulent mixing transition in a shock-driven variable-density flow”, J. of Fluid Mechanics, 831 (2017), 779–825 | MR

[16] D. T. Reese, A. M. Ames, C. D. Noble, J. G. Oakley, D. A. Rothamer, R. Bonazza, “Simultaneous direct measurements of concentration and velocity in the Richtmyer-Meshkov instability”, J. of Fluid Mechanics, 849 (2018), 541–575 | DOI | MR | Zbl

[17] D. J. Hill, C. Pantano, D. I. Pullin, “Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock”, J. of Fluid mechanics, 557 (2006), 29–61 | DOI | MR | Zbl

[18] M. Lombardini, D. J. Hill, D. I. Pullin, D. I. Meiron, “Atwood ratio dependence of Richtmyer-Meshkov ows under reshock conditions using large-eddy simulations”, J. of Fluid Mechanics, 670 (2011), 439–480 | DOI | Zbl

[19] M. Lombardini, D. I. Pullin, D. I. Meiron, “Transition to turbulence in shock-driven mixing: a Mach number study”, J. of Fluid Mechanics, 690 (2012), 203–226 | MR | Zbl

[20] V. K. Tritschler, B. J. Olson, S. K. Lele, S. Hickel, X. Y. Hu, N. A. Adams, “On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface”, J. of Fluid Mechanics, 755 (2014), 429–462 | DOI | MR

[21] A. Subramaniam, S. K. Lele, “Turbulence energetics in an inclined interface Richtmyer-Meshkov instability”, 10th International Symposium on Turbulence and Shear Flow Phenomena (International Symposium on Turbulence and Shear Flow Phenomena), 2017

[22] S. M. Garina, N. V. Zmitrenko, M. Ye. Ladonkina, I. G. Lebo, V. V. Nikishin, N. G. Proncheva, V. B. Rozanov, V. F. Tishkin, “Chislennoe modelirovanie i analiz kharakteristik turbulentnogo peremeshivaniia s pomoshchiu trekhmernogo koda NUT”, Mat. mod., 15:5 (2003), 3–11 | Zbl

[23] M. Lombardini, D. I. Pullin, D. I. Meiron, “Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth”, J. of Fluid Mech., 748 (2014), 85–112

[24] M. Lombardini, D. I. Pullin, D. I. Meiron, “Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics”, J. of Fluid Mechanics, 748, 113–142 | DOI | MR

[25] M. J. Berger, P. Colella, “Local adaptive mesh refinement for shock hydrodynamics”, J. Comp. Phys., 82:1 (1989), 64–84 | DOI | Zbl

[26] M. Berger, J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations”, J. of Comp. Physics, 53:3 (1984), 484–512 | DOI | MR | Zbl

[27] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky, I. S. Menshov, V. S. Nikitin, “Numerical simulation of the recirculation flow during the supersonic separation of moving bodies”, Mathematical Models and Computer Simulations, 12:3 (2020), 282–292 | MR

[28] A. L. Afendikov, A. E. Lutskii, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ia. V. Khankhasaeva, “Algoritm dinamicheskoi lokalnoi adaptatsii setok na osnove veivlet-analiza s ispolzovaniem metoda svobodnoi granitsy”, Preprinty IPM im. M.V. Keldysha, 2015, 094, 20 pp.

[29] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Mod. Comp. Sim., 6:4 (2014), 397–407 | MR | Zbl

[30] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl

[31] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comp. Math. and Math. Physics, 1:2 (1962), 304–320 | MR

[32] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | MR | Zbl

[33] E. F. Toro, M. Spruce, W. Speares, “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4 (1994), 25–34 | Zbl

[34] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, J. of Computational Physics, 77 (1988), 439–471 | MR | Zbl

[35] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper 89-0366, 1989

[36] N. V. Zmitrenko, M. Ye. Ladonkina, V. F. Tishkin, “Chislennoe issledovanie turbulentnogo peremeshivaniia dlia odnoi zadachi o razvitii neustoichivosti Rikhtmaiera-Meshkova”, VANT. Ser. mat. modelir. fiz. processov, 2004, no. 1 | Zbl

[37] V. S. Chevanin, “Chislennoe modelirovanie zadach turbulentnogo peremeshivaniia na osnove kvazimonotonnoi skhemy povyshennogo poriadka tochnosti”, Preprinty IPM im. M.V. Keldysha, 2011, 032

[38] F. Poggi, M. H. Thorembey, G. Rodriguez, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability”, Physics of Fluids, 10:11 (1998) | DOI