Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_9_a5, author = {A. A. Bykov and K. E. Ermakova}, title = {Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {101--130}, publisher = {mathdoc}, volume = {31}, number = {9}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/} }
TY - JOUR AU - A. A. Bykov AU - K. E. Ermakova TI - Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium JO - Matematičeskoe modelirovanie PY - 2019 SP - 101 EP - 130 VL - 31 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/ LA - ru ID - MM_2019_31_9_a5 ER -
%0 Journal Article %A A. A. Bykov %A K. E. Ermakova %T Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium %J Matematičeskoe modelirovanie %D 2019 %P 101-130 %V 31 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/ %G ru %F MM_2019_31_9_a5
A. A. Bykov; K. E. Ermakova. Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 101-130. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/
[1] A. A. Bykov, K. E. Ermakova, “Exact solutions of equations of a nonstationary front with equilibrium points of a fractional order”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 1977–1988 | DOI | MR | Zbl
[2] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl
[3] V. F. Butuzov, A. B. Vasilieva, Singularly Perturbed Problems with Boundary and Interior Layers: Theory and Application, John Wiley Sons, New York, 2007
[4] E.S. Oran, J.P. Boris, Numerical simulation of reactive flows, Elsevier Sci. Publ., 1987 | MR
[5] V. F. Butuzov, “On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation”, Computational Mathematics and Mathematical Physics, 51:1 (2011), 40–50 | DOI | MR | Zbl
[6] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differential Equations, 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl
[7] V. F. Butuzov, “On the dependence of the structure of boundary layers on the boundary conditions in a singularly perturbed boundary ? value problem with multiple root of the related degenerate equation”, Mathematical Notes, 99:2 (2016), 36–47 | MR
[8] V. F. Butuzov, “Ob odnoi singuliarno vozmushchennoi zadache s kratnym kornem vyrozhdennogo uravneniia”, Vestnik kibernetiki, 2017, no. 1(25), 18–34
[9] V. F. Butuzov, N. N. Nefedov, L. Reke, K. R. Shnaider, “Asimptotika, ustoichivost i oblast pritiazheniia periodicheskogo resheniia singuliarno vozmushchennoi parabolicheskoi zadachi s dvukratnym kornem vyrozhdennogo uravneniia”, Modelirovanie i analiz informatsionnykh sistem, 23:3 (2016), 247–257 | MR
[10] V. F. Butuzov, A. I. Bychkov, “Nachalno-kraevaia zadacha dlia singuliarno vozmushchennogo parabolicheskogo uravneniia v sluchaiakh dvukratnogo i trekhkratnogo kornia vyrozhdennogo uravneniia”, Chebyshevskii sbornik, 16:4 (2015), 41–76 | MR
[11] V. F. Butuzov, A. I. Bychkov, “Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation”, Comp. Math. and Math. Physics, 56:4 (2016), 593–611 | DOI | MR | Zbl
[12] V. F. Butuzov, V. A. Beloshapko, “Singuliarno vozmushchennaia ellipticheskaia zadacha Dirikhle s kratnym kornem vyrozhdennogo uravneniia”, Modelirovanie i analiz informatsionnykh sistem, 23:5 (2016), 515–528 | MR
[13] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differential Equations, 51:12 (2015), 1593–1605 | DOI | MR | Zbl
[14] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York, 1992 | MR | Zbl
[15] Yu. V. Bozhevol'nov, N. N. Nefedov, “Front motion in the parabolic reaction-diffusion problem”, Computational Mathematics and Mathematical Physics, 50:2 (2010), 264–273 | DOI | MR | Zbl
[16] A. N. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matem. sb., 22(64):2 (1948), 193–204 | Zbl
[17] S. Lefschetz, Geometric theory. Differential equations, Interscience Publishers, New York, 1957, 390 pp. | MR | Zbl
[18] N. S. Bakhvalov, Numerical methods, Nauka, M., 1975
[19] A.H. Nayfeh, Perturbation Methods, John Wiley, New York, 1973, 425 pp. | MR | Zbl
[20] N. N. Nefedov, “Nestatsionarnye kontrastnye struktury v sisteme reaktsiia–diffuzia”, Matematicheskoe modelirovanie, 4:8 (1992), 58–65 | MR | Zbl
[21] A. A. Bykov, A. S. Sharlo, “Nonstationary contrasting structures in the vicinity of a critical point”, Math. Models and Comp. Simulations, 7:2 (2015), 165–178 | DOI | MR | Zbl
[22] A. A. Bykov, N. N. Nefedov, A. S. Sharlo, “Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity”, Computational Mathematics and Mathematical Physics, 54:8 (2014), 1234–1243 | DOI | MR | Zbl
[23] A. A. Bykov, “Chislennoe reshenie nachalno-kraevoi zadachi dlia psevdoparabolicheskogo uravneniia s vnutrennim perekhodnym sloem”, MAIS, 23:3 (2016), 259–282 | MR