Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium
Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 101-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of contrasting structures arising from the simulation of reaction – diffusion processes in an inhomogeneous medium with a power dependence of the source density on the concentration in the vicinity of the roots. The results obtained earlier for a homogeneous medium are generalized to the case of an inhomogeneous medium, and sufficient conditions for the existence of a solution of the type of contrast structure are strictly substantiated. The exponent of the root function of the right-hand side, in contrast to previously known results, is assumed to be non-integer, including irrational. It is shown that the front (relative to the direction of movement) part of the front is an exponential function, the rear part of the front is a power function, and this is a fundamentally new, previously unknown result. The family of exact solutions of the evolution equation is found. The formal asymptotics of the solution of the initial-boundary value problem for the reaction-diffusion equation is constructed. The substantiation of the correctness of the partial sum of an asymptotic series using the method of differential inequalities is given.
Keywords: nonlinear differential equations, asymptotic methods, contrast structure, differential inequalities.
@article{MM_2019_31_9_a5,
     author = {A. A. Bykov and K. E. Ermakova},
     title = {Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--130},
     publisher = {mathdoc},
     volume = {31},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/}
}
TY  - JOUR
AU  - A. A. Bykov
AU  - K. E. Ermakova
TI  - Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 101
EP  - 130
VL  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/
LA  - ru
ID  - MM_2019_31_9_a5
ER  - 
%0 Journal Article
%A A. A. Bykov
%A K. E. Ermakova
%T Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium
%J Matematičeskoe modelirovanie
%D 2019
%P 101-130
%V 31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/
%G ru
%F MM_2019_31_9_a5
A. A. Bykov; K. E. Ermakova. Nonstationary contrast structures of the problem of reaction-diffusion with roots of integral sheet in a inhomogeneous medium. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 101-130. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a5/

[1] A. A. Bykov, K. E. Ermakova, “Exact solutions of equations of a nonstationary front with equilibrium points of a fractional order”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 1977–1988 | DOI | MR | Zbl

[2] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[3] V. F. Butuzov, A. B. Vasilieva, Singularly Perturbed Problems with Boundary and Interior Layers: Theory and Application, John Wiley Sons, New York, 2007

[4] E.S. Oran, J.P. Boris, Numerical simulation of reactive flows, Elsevier Sci. Publ., 1987 | MR

[5] V. F. Butuzov, “On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation”, Computational Mathematics and Mathematical Physics, 51:1 (2011), 40–50 | DOI | MR | Zbl

[6] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differential Equations, 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl

[7] V. F. Butuzov, “On the dependence of the structure of boundary layers on the boundary conditions in a singularly perturbed boundary ? value problem with multiple root of the related degenerate equation”, Mathematical Notes, 99:2 (2016), 36–47 | MR

[8] V. F. Butuzov, “Ob odnoi singuliarno vozmushchennoi zadache s kratnym kornem vyrozhdennogo uravneniia”, Vestnik kibernetiki, 2017, no. 1(25), 18–34

[9] V. F. Butuzov, N. N. Nefedov, L. Reke, K. R. Shnaider, “Asimptotika, ustoichivost i oblast pritiazheniia periodicheskogo resheniia singuliarno vozmushchennoi parabolicheskoi zadachi s dvukratnym kornem vyrozhdennogo uravneniia”, Modelirovanie i analiz informatsionnykh sistem, 23:3 (2016), 247–257 | MR

[10] V. F. Butuzov, A. I. Bychkov, “Nachalno-kraevaia zadacha dlia singuliarno vozmushchennogo parabolicheskogo uravneniia v sluchaiakh dvukratnogo i trekhkratnogo kornia vyrozhdennogo uravneniia”, Chebyshevskii sbornik, 16:4 (2015), 41–76 | MR

[11] V. F. Butuzov, A. I. Bychkov, “Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation”, Comp. Math. and Math. Physics, 56:4 (2016), 593–611 | DOI | MR | Zbl

[12] V. F. Butuzov, V. A. Beloshapko, “Singuliarno vozmushchennaia ellipticheskaia zadacha Dirikhle s kratnym kornem vyrozhdennogo uravneniia”, Modelirovanie i analiz informatsionnykh sistem, 23:5 (2016), 515–528 | MR

[13] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differential Equations, 51:12 (2015), 1593–1605 | DOI | MR | Zbl

[14] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York, 1992 | MR | Zbl

[15] Yu. V. Bozhevol'nov, N. N. Nefedov, “Front motion in the parabolic reaction-diffusion problem”, Computational Mathematics and Mathematical Physics, 50:2 (2010), 264–273 | DOI | MR | Zbl

[16] A. N. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matem. sb., 22(64):2 (1948), 193–204 | Zbl

[17] S. Lefschetz, Geometric theory. Differential equations, Interscience Publishers, New York, 1957, 390 pp. | MR | Zbl

[18] N. S. Bakhvalov, Numerical methods, Nauka, M., 1975

[19] A.H. Nayfeh, Perturbation Methods, John Wiley, New York, 1973, 425 pp. | MR | Zbl

[20] N. N. Nefedov, “Nestatsionarnye kontrastnye struktury v sisteme reaktsiia–diffuzia”, Matematicheskoe modelirovanie, 4:8 (1992), 58–65 | MR | Zbl

[21] A. A. Bykov, A. S. Sharlo, “Nonstationary contrasting structures in the vicinity of a critical point”, Math. Models and Comp. Simulations, 7:2 (2015), 165–178 | DOI | MR | Zbl

[22] A. A. Bykov, N. N. Nefedov, A. S. Sharlo, “Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity”, Computational Mathematics and Mathematical Physics, 54:8 (2014), 1234–1243 | DOI | MR | Zbl

[23] A. A. Bykov, “Chislennoe reshenie nachalno-kraevoi zadachi dlia psevdoparabolicheskogo uravneniia s vnutrennim perekhodnym sloem”, MAIS, 23:3 (2016), 259–282 | MR