Multiscale simulation of gas cleaning processes
Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 54-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the problem of modeling air cleaning processes from finely dispersed solid contaminants clustered in the form of nanoparticles is considered. The purification technology chosen for the study involves the use of a system consisting of nanofilters and sorbents. Both cleaning methods used in it are currently in high demand and are often combined in appropriate devices. The first cleaning method using nanofilters allows you to get high quality last. However, this method is expensive due to the need for frequent replacement of filter elements (membranes) and also requires the disposal of these elements. The second method of cleaning with sorbents gives a relatively low quality of cleaning, but allows the latter to be carried out many times after washing the sorbent with special liquids. To optimize air cleaning devices using nanofilters and sorbents, a detailed study of the processes occurring in the cleaning system is necessary. The proposed study addresses part of the problem associated with the passage of an air stream containing solid pollutant nanoparticles through a layer of granular sorbent. For this purpose, a multiscale mathematical model, a numerical algorithm and a parallel implementation of the model on a macroscopic scale have been developed. The novelty of the approach is associated with the use of a quasi-gas-dynamic model for describing the flow in the sorbing layer, as well as with the proposed multi-scale formulation of the problem. Preliminary calculations based on the macromodel showed the efficiency of the proposed approach.
Keywords: gas cleaning processes, numerical schemes on unstructured grids, parallel algorithms, high performance computing.
Mots-clés : multi-scale simulation
@article{MM_2019_31_9_a3,
     author = {S. V. Polyakov and Yu. N. Karamzin and T. A. Kudryashova and V. O. Podryga and D. V. Puzyrkov and N. I. Tarasov},
     title = {Multiscale simulation of gas cleaning processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {54--78},
     publisher = {mathdoc},
     volume = {31},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - Yu. N. Karamzin
AU  - T. A. Kudryashova
AU  - V. O. Podryga
AU  - D. V. Puzyrkov
AU  - N. I. Tarasov
TI  - Multiscale simulation of gas cleaning processes
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 54
EP  - 78
VL  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/
LA  - ru
ID  - MM_2019_31_9_a3
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A Yu. N. Karamzin
%A T. A. Kudryashova
%A V. O. Podryga
%A D. V. Puzyrkov
%A N. I. Tarasov
%T Multiscale simulation of gas cleaning processes
%J Matematičeskoe modelirovanie
%D 2019
%P 54-78
%V 31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/
%G ru
%F MM_2019_31_9_a3
S. V. Polyakov; Yu. N. Karamzin; T. A. Kudryashova; V. O. Podryga; D. V. Puzyrkov; N. I. Tarasov. Multiscale simulation of gas cleaning processes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 54-78. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/

[1] V. N. Lystsov, N. V. Murzin, “Problemy bezopasnosti nanotekhnologii”, MIFI, M., 2007, 70 pp.

[2] G. E. Krichevskii, “Opasnosti i riski nanotekhnologii i printsipy kontrolia za nanotekhno-logiiami i nanomaterialami”, Nanotekhnologii i okhrana zdorovia, 2010, no. 3, 10–24

[3] Iu. N. Morgalev, T. G. Morgaleva, N. S. Khoch, S. Iu. Morgalev, Osnovy bezopasnosti pri obrashchenii s nanomaterialami, Tomskii gos. universitet, Tomsk, 2010, 138 pp.

[4] V. V. Ryzhkin, “Perspektivy razvitiia instituta obshchestvennogo kontrolia v sfere nano-industrii Rossii”, Kreativnaia ekonomika, 7:10 (2013), 52–58

[5] V. N. Uzhov, B. I. Miagkov, Ochistka promyshlennykh gazov filtrami, Khimiia, M., 1970, 319 pp.

[6] I. G. Pivovarov, N. G. Bugai, V. A. Rychko, Drenazh s voloknistymi filtrami, Naukova dumka, Kiev, 1980, 211 pp.

[7] M. G. Mazus, M. L. Malgin, M. L. Morgulis, Filtry dlia ulavlivaniia promyshlennykh vybrosov, Mashinostroenie, M., 1985, 240 pp.

[8] E. A. Shtokman, Ochistka vozdukha ot pyli na predpriiatiiakh pishchevoi promyshlennosti, Agropromizdat, M., 1989, 312 pp.

[9] S. B. Stark, Gazoochistnye apparaty i ustanovki v metallurgicheskom proizvodstve, Metallurgiia, M., 1990, 321 pp.

[10] E. A. Shtokman, Ochistka vozdukha, ASV, M., 2007, 313 pp.

[11] N. F. Gladyshev, T. V. Gladysheva, S. I. Dvoretskii, Sistemy i sredstva regeneratsii i ochistki vozdukha obitaemykh germetichnykh obieektov, Izdatelskii dom Spektr, M., 2016, 204 pp. | MR

[12] V. S. Soldatov, A. A. Shunkevich, V. V. Martsinkevich, “Comparative study of water softening with granular and fibrous ion exchangers”, Russian Journal of Applied Chemistry, 74:9 (2001), 1521–1524 | DOI

[13] E. A. Zakharchenko, O. B. Mokhodoeva, G. V. Miasoedova, “Ispolzovanie voloknistykh “napolnennykh” sorbentov dlia dinamicheskogo kontsentrirovaniia blagorodnykh metallov”, Sorbtsionnye i khromatograficheskie protsessy, 5:5 (2005), 679–689 | MR

[14] I. V. Komarova, N. K. Galkina, K. I. Sheptovetskaia, “Issledovaniia voloknistogo sorbenta, napolnennogo kationitom KU-2, s ispolzovaniem matematicheskikh modelei protsessa umiagcheniia vody”, Sorbtsionnye i khromatograficheskie protsessy, 10:3 (2010), 371–377

[15] S. V. Kolotilov, A. V. Shvets, I. V. Vasilenko, N. V. Kasian, V. V. Pavlishchuk, “Poristye magnitnye sorbenty na osnove nanochastits Fe3O4 dlia selektivnogo izvlecheniia opticheski aktivnykh molekul”, Nanosistemy, nanomater., nanotekhnol., 6:4 (2008), 1261–1271

[16] D. A. Sukhareva, A. G. Ganieva, V. Iu. Guskov, F. Kh. Kudasheva, “Sorbtsionnye svoistva modifitsirovannogo nanochastitsami platiny poristogo polimera”, Sorbtsionnye i khromatograficheskie protsessy, 14:1 (2014), 175–180

[17] O. R. Egunova, T. A. Konstantinova, S. N. Shtykov, “Magnitnye nanochastitsy magnetita v razdelenii i kontsentrirovanii”, Izv. Sarat. un-ta. Nov. ser. Ser. Khimiia. Biologiia. Ekologiia, 14:4 (2014), 27–35

[18] V. V. Tolmacheva, V. V. Apyari, E. V. Kochuk, S. G. Dmitrienko, “Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds”, Journal of Analytical Chemistry, 71:4 (2016), 321–338 | DOI | DOI

[19] Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, S. V. Polyakov, “Mnogomasshtabnoe modelirovanie nelineinykh protsessov v tekhnicheskikh mikrosistemakh”, Matem. modelirovanie, 27:7 (2015), 65–74 | MR | Zbl

[20] T. Kudryashova, Yu. Karamzin, V. Podryga, S. Polyakov, “Two-scale computation of N2-H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware”, Advances in Engineering Software, 120 (2018), 79–87 | DOI

[21] V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Multiscale simulation of three-dimensional unsteady gas flows in microchannels of technical systems”, Proc. of the Seventh European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016 (June, 2016), v. 2, 2331–2345

[22] V. O. Podryga, “Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels”, Doklady Mathematics, 94:1 (2016), 458–460 | DOI | MR | Zbl

[23] V. O. Podryga, S. V. Polyakov, “Parallelnaia realizatsiia mnogomasshtabnogo podkhoda dlia rascheta mikrotechenii gaza”, Vychislitelnye metody i programmirovanie, 17:2 (2016), 147–165

[24] V. O. Podryga, S. V. Polyakov, “Mnogomasshtabnoe modelirovanie istecheniia gazovoi strui v vakuum”, Preprinty IPM im. M.V. Keldysha, 2016, 081, 52 pp.

[25] T. Kudryashova, V. Podryga, S. Polyakov, “HPC-simulation of gasdynamic flows on macroscopic and molecular levels”, Nonlinearity. Problems, Solutions and Applications, ch. 26, v. 1, Nova Science Publishers, 2017, 543–556

[26] L. I. Kheifets, A. V. Neimark, Mnogofaznye protsessy v poristykh sredakh, Khimiia, M., 1982, 320 pp.

[27] N. V. Churaev, Fiziko-khimiia protsessov massoperenosa v poristykh telakh, Khimiia, M., 1990, 272 pp.

[28] P. V. Moskalev, V. V. Shitov, Matematicheskoe modelirovanie poristykh sistem, Fizmatlit, M., 2007, 120 pp.

[29] A. E. Scheidegger, The physics of flow through porous media, Macmillan Co, NY, 1960, 313 pp. | MR

[30] S. A. Reitlinger, Pronitsaemost polimernykh materialov, Khimiia, M., 1974, 269 pp.

[31] A. Ia. Malkin, A. E. Chalykh, Diffuziia i viazkost polimerov: Metody izmereniia, Khimiia, M., 1979, 304 pp.

[32] A. E. Chalykh, Diffuziia v polimernykh sistemakh, Khimiia, M., 1987, 312 pp.

[33] I. I. Vorovich, V. M. Aleksandrov, Mekhanika kontaktnykh vzaimodeistvii, Fizmatlit, M., 2001, 672 pp.

[34] N. K. Myshkin, M. I. Petrokovets, “Trenie, smazka, iznos. Fizicheskie osnovy i tekhnicheskie prilozheniia tribologii”, Fizmatlit, M., 2007, 368 pp.

[35] V. G. Zavodinskii, Kompiuternoe modelirovanie nanochastits i nanosistem, Fizmatlit, M., 2013, 174 pp.

[36] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, Adam Hilger, Bristol; IOP Publishing Ltd, NY, 1988, 540 pp. | Zbl

[37] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford Univ. Press, Oxford, 1989, 385 pp.

[38] J. M. Haile, Molecular dynamics simulations. Elementary methods, John Wiley Sons, Inc., NY, 1992, 489 pp.

[39] D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, 2002, 638 pp.

[40] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2004, 564 pp. | Zbl

[41] J. E. Lennard-Jones, “Cohesion”, Proc. Phys. Soc., 43:5 (1931), 461–482 | DOI

[42] L. Verlet, “Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[43] N. Metropolis, S. Ulam, “The Monte Carlo method”, Journal of the American Statistical Association, 44:247 (1949), 335–341 | DOI | MR | Zbl

[44] I. M. Sobol, The Monte Carlo method, Chicago University Press, Chicago, 1974, 72 pp. | MR | MR | Zbl

[45] G. S. Fishman, Monte Carlo: concepts, algorithms, and applications, Springer, 1996, 722 pp. | MR | Zbl

[46] O. M. Belotserkovskii, Yu. I. Khlopkov, Monte-Carlo methods in mechanics of fluids and gas, World Scientific Publishing Ltd., NY–London–Singapore–Hong Kong–Beijing, 2010, 268 pp. | MR

[47] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[48] T. G. Elizarova, Quasi-gas dynamic equations, Springer-Verlag, Berlin–Heidelberg–NY, 2009, 286 pp. | MR | Zbl

[49] Iu. V. Sheretov, “Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii”, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2009, 400 pp.

[50] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures”, Doklady Mathematics, 90:3 (2014), 719–723 | DOI | MR | Zbl

[51] A. A. Zlotnik, V. A. Gavrilin, “O diskretizatsii odnomernoi kvazigidrodinamicheskoi sistemy uravnenii dlia realnogo gaza”, Vestnik Moskovskogo energeticheskogo instituta, 2016, no. 1, 5–14 | MR

[52] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comp. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | DOI | MR | Zbl

[53] V. O. Podryga, S. V. Polyakov, “Molekuliarno-dinamicheskoe modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo nikelia”, Preprinty IPM im. M.V. Keldysha, 2014, 41, 20 pp.

[54] V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, “Superkompiuternoe molekuliarnoe modelirovanie termodinamicheskogo ravnovesiia v mikrosistemakh gaz-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138

[55] V. O. Podryga, S. V. Polyakov, “Molekuliarno-dinamicheskii raschet makroparametrov gaza v potoke i na granitse”, Preprinty IPM im. M.V. Keldysha, 2016, 80, 26 pp.

[56] G. I. Marchuk, Metody rasshchepleniia, Nauka, M., 1988, 263 pp.

[57] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland Publishing Company, Amsterdam, 2000, 713–1020 | MR | Zbl

[58] R. Li, Zh. Chen, W. Wu, Generalized difference methods for differential equations. Numerical analysis of finite volume methods, Marcel Dekker Inc., NY, 2000, 472 pp. | MR | Zbl

[59] Yu. N. Grigoriev, V. A. Vshivkov, M. P. Fedoruk, Numerical 'Particle-In-Cell' Methods: Theory and Applications, VSP, Utrecht–Boston, 2002, 249 pp. | MR

[60] I. V. Popov, S. V. Polyakov, “Postroenie adaptivnykh nereguliarnykh treugolnykh setok dlia dvumernykh mnogosviaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl

[61] Computational fluid dynamics in ANSYS CFX

[62] W. Gautschi, Numerical analysis, Springer/Birkhauser, NY, 2012, 588 pp.

[63] I. V. Popov, I. V. Fryazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, KRASAND, M., 2015, 288 pp.

[64] Yu. N. Karamzin, S. V. Polyakov, “Eksponentsialnye konechno-obieemnye skhemy dlia resheniia ellipticheskikh i parabolicheskikh uravnenii obshchego vida na nereguliarnykh setkakh”, Setochnye metody dlia kraevykh zadach i prilozheniia, Materialy Vosmoi Vserossiiskoi konf., Izd-vo Kazanskogo gos. universiteta, Kazan, 2010, 234–248

[65] A. A. Samarskii, Vvedenie v teoriiu raznostnykh skhem, Nauka, M., 1971, 553 pp.

[66] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1976, 532 pp.

[67] S. V. Polyakov, T. A. Kudryashova, A. A. Sverdlin, E. M. Kononov, O. A. Kosolapov, “Parallel software package for simulation of continuum mechanics problems on modern multiprocessor systems”, Math. Models Comput. Simul., 3:1 (2011), 46–57 | DOI | Zbl

[68] Yu. Karamzin, T. Kudryashova, V. Podryga, S. Polyakov, “Numerical simulation of the gas mixture flows using hybrid computer systems”, Proc. of the Ninth International Conference on Engineering Computational Technology, ECT 2014, Civil-Comp Press, Stirlingshire, UK, 2014, 28, 14 pp.