Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_9_a3, author = {S. V. Polyakov and Yu. N. Karamzin and T. A. Kudryashova and V. O. Podryga and D. V. Puzyrkov and N. I. Tarasov}, title = {Multiscale simulation of gas cleaning processes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {54--78}, publisher = {mathdoc}, volume = {31}, number = {9}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/} }
TY - JOUR AU - S. V. Polyakov AU - Yu. N. Karamzin AU - T. A. Kudryashova AU - V. O. Podryga AU - D. V. Puzyrkov AU - N. I. Tarasov TI - Multiscale simulation of gas cleaning processes JO - Matematičeskoe modelirovanie PY - 2019 SP - 54 EP - 78 VL - 31 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/ LA - ru ID - MM_2019_31_9_a3 ER -
%0 Journal Article %A S. V. Polyakov %A Yu. N. Karamzin %A T. A. Kudryashova %A V. O. Podryga %A D. V. Puzyrkov %A N. I. Tarasov %T Multiscale simulation of gas cleaning processes %J Matematičeskoe modelirovanie %D 2019 %P 54-78 %V 31 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/ %G ru %F MM_2019_31_9_a3
S. V. Polyakov; Yu. N. Karamzin; T. A. Kudryashova; V. O. Podryga; D. V. Puzyrkov; N. I. Tarasov. Multiscale simulation of gas cleaning processes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 54-78. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a3/
[1] V. N. Lystsov, N. V. Murzin, “Problemy bezopasnosti nanotekhnologii”, MIFI, M., 2007, 70 pp.
[2] G. E. Krichevskii, “Opasnosti i riski nanotekhnologii i printsipy kontrolia za nanotekhno-logiiami i nanomaterialami”, Nanotekhnologii i okhrana zdorovia, 2010, no. 3, 10–24
[3] Iu. N. Morgalev, T. G. Morgaleva, N. S. Khoch, S. Iu. Morgalev, Osnovy bezopasnosti pri obrashchenii s nanomaterialami, Tomskii gos. universitet, Tomsk, 2010, 138 pp.
[4] V. V. Ryzhkin, “Perspektivy razvitiia instituta obshchestvennogo kontrolia v sfere nano-industrii Rossii”, Kreativnaia ekonomika, 7:10 (2013), 52–58
[5] V. N. Uzhov, B. I. Miagkov, Ochistka promyshlennykh gazov filtrami, Khimiia, M., 1970, 319 pp.
[6] I. G. Pivovarov, N. G. Bugai, V. A. Rychko, Drenazh s voloknistymi filtrami, Naukova dumka, Kiev, 1980, 211 pp.
[7] M. G. Mazus, M. L. Malgin, M. L. Morgulis, Filtry dlia ulavlivaniia promyshlennykh vybrosov, Mashinostroenie, M., 1985, 240 pp.
[8] E. A. Shtokman, Ochistka vozdukha ot pyli na predpriiatiiakh pishchevoi promyshlennosti, Agropromizdat, M., 1989, 312 pp.
[9] S. B. Stark, Gazoochistnye apparaty i ustanovki v metallurgicheskom proizvodstve, Metallurgiia, M., 1990, 321 pp.
[10] E. A. Shtokman, Ochistka vozdukha, ASV, M., 2007, 313 pp.
[11] N. F. Gladyshev, T. V. Gladysheva, S. I. Dvoretskii, Sistemy i sredstva regeneratsii i ochistki vozdukha obitaemykh germetichnykh obieektov, Izdatelskii dom Spektr, M., 2016, 204 pp. | MR
[12] V. S. Soldatov, A. A. Shunkevich, V. V. Martsinkevich, “Comparative study of water softening with granular and fibrous ion exchangers”, Russian Journal of Applied Chemistry, 74:9 (2001), 1521–1524 | DOI
[13] E. A. Zakharchenko, O. B. Mokhodoeva, G. V. Miasoedova, “Ispolzovanie voloknistykh “napolnennykh” sorbentov dlia dinamicheskogo kontsentrirovaniia blagorodnykh metallov”, Sorbtsionnye i khromatograficheskie protsessy, 5:5 (2005), 679–689 | MR
[14] I. V. Komarova, N. K. Galkina, K. I. Sheptovetskaia, “Issledovaniia voloknistogo sorbenta, napolnennogo kationitom KU-2, s ispolzovaniem matematicheskikh modelei protsessa umiagcheniia vody”, Sorbtsionnye i khromatograficheskie protsessy, 10:3 (2010), 371–377
[15] S. V. Kolotilov, A. V. Shvets, I. V. Vasilenko, N. V. Kasian, V. V. Pavlishchuk, “Poristye magnitnye sorbenty na osnove nanochastits Fe3O4 dlia selektivnogo izvlecheniia opticheski aktivnykh molekul”, Nanosistemy, nanomater., nanotekhnol., 6:4 (2008), 1261–1271
[16] D. A. Sukhareva, A. G. Ganieva, V. Iu. Guskov, F. Kh. Kudasheva, “Sorbtsionnye svoistva modifitsirovannogo nanochastitsami platiny poristogo polimera”, Sorbtsionnye i khromatograficheskie protsessy, 14:1 (2014), 175–180
[17] O. R. Egunova, T. A. Konstantinova, S. N. Shtykov, “Magnitnye nanochastitsy magnetita v razdelenii i kontsentrirovanii”, Izv. Sarat. un-ta. Nov. ser. Ser. Khimiia. Biologiia. Ekologiia, 14:4 (2014), 27–35
[18] V. V. Tolmacheva, V. V. Apyari, E. V. Kochuk, S. G. Dmitrienko, “Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds”, Journal of Analytical Chemistry, 71:4 (2016), 321–338 | DOI | DOI
[19] Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, S. V. Polyakov, “Mnogomasshtabnoe modelirovanie nelineinykh protsessov v tekhnicheskikh mikrosistemakh”, Matem. modelirovanie, 27:7 (2015), 65–74 | MR | Zbl
[20] T. Kudryashova, Yu. Karamzin, V. Podryga, S. Polyakov, “Two-scale computation of N2-H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware”, Advances in Engineering Software, 120 (2018), 79–87 | DOI
[21] V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Multiscale simulation of three-dimensional unsteady gas flows in microchannels of technical systems”, Proc. of the Seventh European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016 (June, 2016), v. 2, 2331–2345
[22] V. O. Podryga, “Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels”, Doklady Mathematics, 94:1 (2016), 458–460 | DOI | MR | Zbl
[23] V. O. Podryga, S. V. Polyakov, “Parallelnaia realizatsiia mnogomasshtabnogo podkhoda dlia rascheta mikrotechenii gaza”, Vychislitelnye metody i programmirovanie, 17:2 (2016), 147–165
[24] V. O. Podryga, S. V. Polyakov, “Mnogomasshtabnoe modelirovanie istecheniia gazovoi strui v vakuum”, Preprinty IPM im. M.V. Keldysha, 2016, 081, 52 pp.
[25] T. Kudryashova, V. Podryga, S. Polyakov, “HPC-simulation of gasdynamic flows on macroscopic and molecular levels”, Nonlinearity. Problems, Solutions and Applications, ch. 26, v. 1, Nova Science Publishers, 2017, 543–556
[26] L. I. Kheifets, A. V. Neimark, Mnogofaznye protsessy v poristykh sredakh, Khimiia, M., 1982, 320 pp.
[27] N. V. Churaev, Fiziko-khimiia protsessov massoperenosa v poristykh telakh, Khimiia, M., 1990, 272 pp.
[28] P. V. Moskalev, V. V. Shitov, Matematicheskoe modelirovanie poristykh sistem, Fizmatlit, M., 2007, 120 pp.
[29] A. E. Scheidegger, The physics of flow through porous media, Macmillan Co, NY, 1960, 313 pp. | MR
[30] S. A. Reitlinger, Pronitsaemost polimernykh materialov, Khimiia, M., 1974, 269 pp.
[31] A. Ia. Malkin, A. E. Chalykh, Diffuziia i viazkost polimerov: Metody izmereniia, Khimiia, M., 1979, 304 pp.
[32] A. E. Chalykh, Diffuziia v polimernykh sistemakh, Khimiia, M., 1987, 312 pp.
[33] I. I. Vorovich, V. M. Aleksandrov, Mekhanika kontaktnykh vzaimodeistvii, Fizmatlit, M., 2001, 672 pp.
[34] N. K. Myshkin, M. I. Petrokovets, “Trenie, smazka, iznos. Fizicheskie osnovy i tekhnicheskie prilozheniia tribologii”, Fizmatlit, M., 2007, 368 pp.
[35] V. G. Zavodinskii, Kompiuternoe modelirovanie nanochastits i nanosistem, Fizmatlit, M., 2013, 174 pp.
[36] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, Adam Hilger, Bristol; IOP Publishing Ltd, NY, 1988, 540 pp. | Zbl
[37] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford Univ. Press, Oxford, 1989, 385 pp.
[38] J. M. Haile, Molecular dynamics simulations. Elementary methods, John Wiley Sons, Inc., NY, 1992, 489 pp.
[39] D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, 2002, 638 pp.
[40] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2004, 564 pp. | Zbl
[41] J. E. Lennard-Jones, “Cohesion”, Proc. Phys. Soc., 43:5 (1931), 461–482 | DOI
[42] L. Verlet, “Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[43] N. Metropolis, S. Ulam, “The Monte Carlo method”, Journal of the American Statistical Association, 44:247 (1949), 335–341 | DOI | MR | Zbl
[44] I. M. Sobol, The Monte Carlo method, Chicago University Press, Chicago, 1974, 72 pp. | MR | MR | Zbl
[45] G. S. Fishman, Monte Carlo: concepts, algorithms, and applications, Springer, 1996, 722 pp. | MR | Zbl
[46] O. M. Belotserkovskii, Yu. I. Khlopkov, Monte-Carlo methods in mechanics of fluids and gas, World Scientific Publishing Ltd., NY–London–Singapore–Hong Kong–Beijing, 2010, 268 pp. | MR
[47] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.
[48] T. G. Elizarova, Quasi-gas dynamic equations, Springer-Verlag, Berlin–Heidelberg–NY, 2009, 286 pp. | MR | Zbl
[49] Iu. V. Sheretov, “Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii”, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2009, 400 pp.
[50] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures”, Doklady Mathematics, 90:3 (2014), 719–723 | DOI | MR | Zbl
[51] A. A. Zlotnik, V. A. Gavrilin, “O diskretizatsii odnomernoi kvazigidrodinamicheskoi sistemy uravnenii dlia realnogo gaza”, Vestnik Moskovskogo energeticheskogo instituta, 2016, no. 1, 5–14 | MR
[52] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comp. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | DOI | MR | Zbl
[53] V. O. Podryga, S. V. Polyakov, “Molekuliarno-dinamicheskoe modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo nikelia”, Preprinty IPM im. M.V. Keldysha, 2014, 41, 20 pp.
[54] V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, “Superkompiuternoe molekuliarnoe modelirovanie termodinamicheskogo ravnovesiia v mikrosistemakh gaz-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138
[55] V. O. Podryga, S. V. Polyakov, “Molekuliarno-dinamicheskii raschet makroparametrov gaza v potoke i na granitse”, Preprinty IPM im. M.V. Keldysha, 2016, 80, 26 pp.
[56] G. I. Marchuk, Metody rasshchepleniia, Nauka, M., 1988, 263 pp.
[57] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland Publishing Company, Amsterdam, 2000, 713–1020 | MR | Zbl
[58] R. Li, Zh. Chen, W. Wu, Generalized difference methods for differential equations. Numerical analysis of finite volume methods, Marcel Dekker Inc., NY, 2000, 472 pp. | MR | Zbl
[59] Yu. N. Grigoriev, V. A. Vshivkov, M. P. Fedoruk, Numerical 'Particle-In-Cell' Methods: Theory and Applications, VSP, Utrecht–Boston, 2002, 249 pp. | MR
[60] I. V. Popov, S. V. Polyakov, “Postroenie adaptivnykh nereguliarnykh treugolnykh setok dlia dvumernykh mnogosviaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl
[61] Computational fluid dynamics in ANSYS CFX
[62] W. Gautschi, Numerical analysis, Springer/Birkhauser, NY, 2012, 588 pp.
[63] I. V. Popov, I. V. Fryazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, KRASAND, M., 2015, 288 pp.
[64] Yu. N. Karamzin, S. V. Polyakov, “Eksponentsialnye konechno-obieemnye skhemy dlia resheniia ellipticheskikh i parabolicheskikh uravnenii obshchego vida na nereguliarnykh setkakh”, Setochnye metody dlia kraevykh zadach i prilozheniia, Materialy Vosmoi Vserossiiskoi konf., Izd-vo Kazanskogo gos. universiteta, Kazan, 2010, 234–248
[65] A. A. Samarskii, Vvedenie v teoriiu raznostnykh skhem, Nauka, M., 1971, 553 pp.
[66] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1976, 532 pp.
[67] S. V. Polyakov, T. A. Kudryashova, A. A. Sverdlin, E. M. Kononov, O. A. Kosolapov, “Parallel software package for simulation of continuum mechanics problems on modern multiprocessor systems”, Math. Models Comput. Simul., 3:1 (2011), 46–57 | DOI | Zbl
[68] Yu. Karamzin, T. Kudryashova, V. Podryga, S. Polyakov, “Numerical simulation of the gas mixture flows using hybrid computer systems”, Proc. of the Ninth International Conference on Engineering Computational Technology, ECT 2014, Civil-Comp Press, Stirlingshire, UK, 2014, 28, 14 pp.