Reactivities of the reactions important for controlled fusion targets
Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

For simulations of controlled fusion problems, 4 major reactions are conventionally ac-counted for. In the present work, we compare cross sections of many thermonuclear reac-tions between lightest elements. We show that along with the traditional reactions, con-siderable contribution can be given by the reaction $\mathrm{T+T}\to2n+{}^4\mathrm{He}$. At low temperatures, two reactions $\mathrm{D}+p\to \gamma+{}^3\mathrm{He}$ and $\mathrm{T}+p\to \gamma+{}^4\mathrm{He}$ also have considerable contribution, the rest reactions are likely to be neglected. For the outlined reactions, we perform a more thorough processing of experimental data and construct high-precision approximations. For the new reactions, the accuracy of the $\mathrm{S}$-factor is $2$$6\%$ and that of the reactivities is $3$$4\%$.
Keywords: thermonuclear reactions, cross sections, reactivities, approximations.
@article{MM_2019_31_9_a2,
     author = {A. A. Belov and N. N. Kalitkin and O. I. Topor and I. A. Fedorov},
     title = {Reactivities of the reactions important for controlled fusion targets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {31},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a2/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
AU  - O. I. Topor
AU  - I. A. Fedorov
TI  - Reactivities of the reactions important for controlled fusion targets
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 39
EP  - 53
VL  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a2/
LA  - ru
ID  - MM_2019_31_9_a2
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%A O. I. Topor
%A I. A. Fedorov
%T Reactivities of the reactions important for controlled fusion targets
%J Matematičeskoe modelirovanie
%D 2019
%P 39-53
%V 31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a2/
%G ru
%F MM_2019_31_9_a2
A. A. Belov; N. N. Kalitkin; O. I. Topor; I. A. Fedorov. Reactivities of the reactions important for controlled fusion targets. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 39-53. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a2/

[1] NEA Data Bank — Nuclear Data Services, http://www.oecd-nea.org/janisweb/search/exfor

[2] NIST Standard Reference Data, https://www.nist.gov/srd

[3] S. N. Abramovich, B. Ya. Guszhovskij, V. A. Zherebtsov, A. G. Zvenigorodskij, Nuclear Physics Constants for Thermonuclear Fusion — A Reference Handbook, IAEA Rep. INDC(CCP)-326/L+F, IAEA, Vienna, 1991

[4] B. N. Kozlov, “Skorosti termoiadernykh reaktsii”, Atomnaia energiia, 12:3 (1962), 238–240

[5] A. A. Belov, N. N. Kalitkin, “Processing of Experimental Curves by Applying a Regularized Double Period Method”, Doklady Mathematics, 94:2 (2016), 539–543 | DOI | MR | Zbl

[6] A. A. Belov, N. N. Kalitkin, “Regularization of the Double Period Method for Experimental Data Processing”, Comput. Mathem. and Mathem. Physics, 57:11 (2017), 1741–1750 | DOI | MR | Zbl

[7] A. A. Belov, N. N. Kalitkin, I. A. Kozlitin, “Refinement of thermonuclear reaction rates”, Fusion Engineering and Design, 141 (2019), 51–58 | DOI

[8] N. N. Kalitkin, I. A. Kozlitin, A. A. Belov, Baza dannykh TEFIS, Institut prikladnoi matematiki im. M.V. Keldysha RAN, M.

[9] G. A. Gamow, “Ocherk razvitiia ucheniia o stroenii atomnogo iadra. Teoriia radioaktivnogo raspada”, Uspekhi fizicheskikh nauk, 10:4 (1930), 531–544 | DOI

[10] L. D. Landau, E. M. Lifshitz, Quantum Mechanics (Non-relativistic theory), Third edition, Butterworth-Heinemann, Oxford, 1981

[11] E. Iu. Dnestrovskaia, N. N. Kalitkin, “Regressiia eksperimentalnykh krivykh”, Preprinty IPM im. M.V. Keldysha RAN, 1987, 181, 24 pp.

[12] Los Alamos Scientific Lab. Reports, No 7722-PR, 1978/12, page 1

[13] H. S. Bosch, G. M. Hale, “Improved formulas for fusion cross-sections and thermal reactivities”, Nuclear Fusion, 32 (1992), 611 | DOI