Numerical simulation of recirculation flow during supersonic separation of moving bodies
Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 21-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physical features of a flow structure evolution during supersonic small body (pellet) injec-tion towards the flow from the channel of a spherically blunted cylinder are studied. The diameter of cylinder is 35 times larger than of an injected body. Numerical simulation is made on multilevel Cartesian grids with a local adaptation based on the wavelet analysis. The body motion is accounted with the use of free boundary method. Dynamics of a moving body interaction with the bow shock from cylinder, formation of the reverse flow region between bodies, its evolution and disappearance, and subsequent establishment of a stationary flow are studied. Reduction of a main body drag to the level 0.2 of the initial one is demonstrated.
Keywords: computational fluid dynamics, free boundary method, Cartesian grids, mesh refinement, flow past moving bodies
Mots-clés : pellet injection.
@article{MM_2019_31_9_a1,
     author = {A. L. Afendikov and A. E. Lutsky and I. S. Menshov and V. S. Nikitin and Ya. V. Khankhasaeva},
     title = {Numerical simulation of recirculation flow during supersonic separation of moving bodies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--38},
     publisher = {mathdoc},
     volume = {31},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a1/}
}
TY  - JOUR
AU  - A. L. Afendikov
AU  - A. E. Lutsky
AU  - I. S. Menshov
AU  - V. S. Nikitin
AU  - Ya. V. Khankhasaeva
TI  - Numerical simulation of recirculation flow during supersonic separation of moving bodies
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 21
EP  - 38
VL  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a1/
LA  - ru
ID  - MM_2019_31_9_a1
ER  - 
%0 Journal Article
%A A. L. Afendikov
%A A. E. Lutsky
%A I. S. Menshov
%A V. S. Nikitin
%A Ya. V. Khankhasaeva
%T Numerical simulation of recirculation flow during supersonic separation of moving bodies
%J Matematičeskoe modelirovanie
%D 2019
%P 21-38
%V 31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a1/
%G ru
%F MM_2019_31_9_a1
A. L. Afendikov; A. E. Lutsky; I. S. Menshov; V. S. Nikitin; Ya. V. Khankhasaeva. Numerical simulation of recirculation flow during supersonic separation of moving bodies. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 21-38. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a1/

[1] S. J. Laurence, N. J. Parziale, R. Deiterding, “Dynamical separation of spherical bodies in supersonic flow”, J. Fluid Mech., 713 (2012), 159–182 | DOI | MR | Zbl

[2] Wang Yuan Jing, Wang Hongbia, Qian Fengxue, Chang Lixia, “Investigation on Separation Interference of Typical Multi-Body Vehicle in Supersonic Conditions”, 2013 Fourth International Conference on Digital Manufacturing Automation

[3] A. V. Erofeev, T. A. Lapushkina, S. A. Poniaev, R. O. Kurakin, B. G. Zhukov, “Flow Around Different Bodies at the Pellet or Plasma Jet Injection”, 50th AIAA Aerospace Sci. Meeting including the New Horizons Forum and Aerospace Exposition (2012), AIAA-2012-1027

[4] S. Leonov, V. Bityurin, A. Yuriev, S. Pirogov, B. Zhukov, “Problems in Electric Method of Drag Reduction and Flow/Flight Control”, 41th AIAA Aerospace Sciences Meeting Exhibit (Reno, NV, USA, 2003), AIAA-2003-0035

[5] V. S. Khlebnikov, “The pattern and restructuring of supersonic flow past a pair of bodies”, Fluid Dynamics, 29:1 (1994), 123–128 | DOI

[6] V. S. Khlebnikov, “Perestroika techeniya mezhdu paroi tel, odno iz kotorykh raspolozheno v slede drugogo, pri sverkhzvukovom obtekanii”, Uchenye zapiski TsAGI, 7:3 (1976), 133–136

[7] K. P. Petrov, Aerodinamika tel prosteishikh form, Izd-vo «Faktorial», M., 1998, 432 pp.

[8] V. N. Kudryavtsev, A. Ya. Cherkez, V. A. Shilov, “Study of supersonic flow about two separating bodies”, Izv. AN SSSR, Mekhanika Zhidkosti i Gaza, 4:2 (1969), 91–99

[9] R. I. Vinogradov, V. V. Trofimov, I. R. Yakubov, “Osobennosti sverkhzvukovogo obtekaniya dvukh tel i ikh aerodinamicheskie kharakteristiki v rezhime razdeleniya”, Uchenye zapiski TsAGI, 20:4 (1989), 102–107

[10] L. G. Vasenev, D. A. Vnuchkov, V. I. Zvegintsev, S. V. Lukashevich, A. N. Shiplyuk, “Aerodynamic drag measuring for two consistently located axisymmetrical models during their separation”, 16th International conference on the methods of aerophysical research (August 2012, Kazan, Russia), 19–25

[11] A. E. Lutsky, I. S. Menshov, Y. V. Khankhasaeva, “The effect of incident flow on a supersonic circumfluence of a blunt object”, Math. Models Comp. Simul., 9 (2017), 92–100 | DOI | MR

[12] A. L. Afendikov, Ya. V. Khankhasaeva, A. E. Lusky, I. S. Menshov, K. D. Merkulov, “Computation and visualization of flows past bodies in mutual motion”, Scientific Visualization, 8:4 (2016), 128–138

[13] K. V. Babarykin, V. E. Kuz'mina, A. I. Tsvetkov, “Avtokolebaniya pri natekanii ravnomernogo sverkhzvukovogo potoka na telo s vystupayushei ostroi igloi”, Aerodinamika, Izdatel'stvo SPbGU, SPb., 2001, 128–149

[14] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Mathematical Models and Computer Simulations, 6:6 (2014), 612–621 | DOI | MR

[15] I. S. Menshov, P. V. Pavlukhin, “Efficient Parallel Shock-Capturing Method for Aerodynamics Simulations on Body-Unfitted Cartesian Grids”, Comp. Math. Math. Phys., 56:9 (2016), 1651–1664 | DOI | MR | Zbl

[16] A. L. Afendikov, A. A. Davydov, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ya. V. Khankhasaeva, Adaptivnye veivletnye algoritmy dlya resheniya zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.

[17] A. M. Khokhlov, “Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations”, J. Comput. Phys., 143 (1998), 519–543 | DOI | MR | Zbl

[18] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh uravnenii gidrodinamiki”, Mat. sbornik, 47:3 (1957), 271–306

[19] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[20] Chi-Wang Shu, “High Order ENO and WENO Schemes for Computational Fluid Dynamics”, High-order methods for computational physics, Springer, Heidelberg, 1999, 439–582 | MR | Zbl

[21] V. F. Tishkin, E. E. Peskova, R. V. Zhalnin, V. A. Goryunov, “O postroenii WENO-skhem dlya giperbolicheskikh sistem uravnenii ns nestrukturirovannykh setkakh”, Izvestiya vysshikh uchebnykh zavedenii. Privolzhskii region. Fiz. mat. nauki, 2014, no. 1(29)

[22] P. Yu. Georgievskii, V. A. Levin, “Sverkhzvukovoe obtekanie tel pri nalichii vneshnikh istochnikov teplovydeleniia”, Pisma v ZHTF, 14:8 (1988), 684–687

[23] S. V. Guvernyuk, K. G. Savinov, “Isobaric separation structures in supersonic flows with a localized inhomogeneity”, Doklady Physics, 52:3 (2007), 151–155 | DOI

[24] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko et al., “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comp. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI | MR | Zbl