The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation
Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 3-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers bicompact schemes for HOLO algorithms for solving the transport equation. To accelerate the convergence of scattering iterations, not only the solution of the transfer equation with respect to the distribution function of high order (HO) is used, but also the quasidiffusion equation of low order (LO) is used. For both systems of kinet-ic equations semi-discrete bicompact schemes with the fourth order of approximation in space are constructed. Integration over time can be carried out with any order of approx-imation. The diagonal-implicit third order approximation method is used in the work, its each stage can be reduced to the implicit Euler method. The discretization of quasi-diffusion equations is described in detail. Two variants for the boundary conditions for the LO part are considered: the classical one using fractional-linear functionals for the flux and radiation density ratio, and also by the radiation density value from the HO part of the system. It is shown that the classical boundary conditions for the LO system of equations of quasi-diffusion reduces the order of convergence of the scheme in time to the second. Setting the boundary conditions under the solution of the transport equation preserves the third order of convergence in time, but worsens the efficiency of iteration acceleration in HOLO algorithm.
Mots-clés : transport equation, quasi-diffusion method
Keywords: bicompact scheme, HOLO algorithms for transport equation solving, sweep method, diagonally implicit Runge-Kutta method.
@article{MM_2019_31_9_a0,
     author = {E. N. Aristova and N. I. Karavaeva},
     title = {The boundary conditions in the bicompact schemes for {HOLO} algorithms for solving the transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {31},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_9_a0/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - N. I. Karavaeva
TI  - The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 20
VL  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_9_a0/
LA  - ru
ID  - MM_2019_31_9_a0
ER  - 
%0 Journal Article
%A E. N. Aristova
%A N. I. Karavaeva
%T The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation
%J Matematičeskoe modelirovanie
%D 2019
%P 3-20
%V 31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_9_a0/
%G ru
%F MM_2019_31_9_a0
E. N. Aristova; N. I. Karavaeva. The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 9, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2019_31_9_a0/