Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_8_a6, author = {S. V. Bogomolov and N. B. Esikova}, title = {Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {120--142}, publisher = {mathdoc}, volume = {31}, number = {8}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/} }
TY - JOUR AU - S. V. Bogomolov AU - N. B. Esikova TI - Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field JO - Matematičeskoe modelirovanie PY - 2019 SP - 120 EP - 142 VL - 31 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/ LA - ru ID - MM_2019_31_8_a6 ER -
S. V. Bogomolov; N. B. Esikova. Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 120-142. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/
[1] B.N. Chetverushkin, N.D'Ascenzo, A.V. Saveliev, V.I. Saveliev, “A kinetic model for magnetogasdynamics”, Math. Models Comput. Simul., 9:1 (2017), 544–553 | DOI | MR
[2] B.N. Chetverushkin, N.D'Ascenzo, A.V. Saveliev, V.I. Saveliev, “Kinetic Model and Magnetogasdynamics Equations”, Comp. Math. Math. Phys., 58:5 (2018), 691–699 | DOI | MR | Zbl
[3] B. N. Chetverushkin, A V. Saveliev, V.I. Saveliev, “A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena”, Comput. Math. Math. Phys., 58:8 (2018), 1384–1394 | DOI | MR | Zbl
[4] A.A. Samarskii, A.V. Zaharov, A.G. Sveshnikov, “Raschet dvizheniia zariazhennogo puchka bolshikh chastits s uchetom sobstvennogo prostranstvennogo zariada puchka”, Doklady akademii nauk, 197:3 (1971), 554–557
[5] V.I. Kolobov, R.R. Arslanbekov, V.V. Aristov, A.A. Frolova, S.A. Zabelok, “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, Journal of Computational Physics, 223:2 (2007), 589–608 | DOI | Zbl
[6] V.I. Bogachev, N.V. Krylov, M. Rekner, S.V. Shaposhnikov, Uravnenia Fokkera-Planka-Kolmogorova, IKI, 2013, 576 pp.
[7] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, “Intermittency in random media”, Sov. Phys. Uspekhi, 30:5 (1987), 353–369 | DOI | DOI | MR
[8] M.H. Gorji, P. Jenny, “Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows”, Journal of Computational Physics, 287 (2015), 110–129 | DOI | MR | Zbl
[9] J. Zhang, D. Zeng, J. Fan, “Analysis of transport properties determined by Langevin dynamics using Green-Kubo formulae”, Physica A: Statistical Mechanics and its Applications, 411 (2014), 104–112 | DOI | MR | Zbl
[10] M.F. Ivanov, V.A. Galburt, “Stokhasticheskii podkhod k chislennomu resheniiu uravneniia Fokkera–Planka”, Matem. modelirovanie, 20:11 (2008), 3–27
[11] V.K. Gupta, M. Torrilhon, “Comparison of relaxation phenomena in binary gas-mixtures of Maxwell molecules and hard spheres”, Computers Mathematics with Applications, 70:1 (2015), 73–88 | DOI | MR
[12] S.V. Bogomolov, “An approach to deriving stochastic gas dynamics models”, Doklady Mathematics, 78 (2008), 929–931 | DOI | MR | Zbl
[13] A.V. Skorokhod, Stochastic Equations for Complex Systems, Kluwer Academic, Dordrecht, 1987 | MR
[14] A.A. Arsen'yev, “On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 400–410 | MR | Zbl
[15] S.V. Bogomolov, “On Fokker-Planck model for the Boltzmann collision integral at the moderate Knudsen numbers”, Math. Mod. Comp. Simul., 1:6 (2009), 739–744 | DOI | MR | Zbl
[16] S.V. Bogomolov, L.V. Dorodnitsyn, “Equations of stochastic quasi-gas dynamics: Viscous gas case”, Math. Models Comp. Simulations, 3:4 (2011), 457–467 | DOI | MR
[17] S.V. Bogomolov, “Stochastic quasi gas dynamics equations as a base for particle methods”, Proc. V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010 (Lisbon, Portugal, 2010) | MR
[18] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Rev. Modern. Phys., 15:1 (1943), 1–89 | DOI | MR | Zbl
[19] J.G. Kirkwood, “The statistical mechanical theory of transport processes”, J. Chem. Phys., 14:3 (1946), 180–201 | DOI
[20] C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, Cambridge University Press, 2000 | MR | Zbl
[21] A.V. Skorokhod, Stochastic Equations for Complex Systems, Kluwer Academic, Dordrecht, 1987 | MR
[22] S.V. Bogomolov, I.G. Gudich, “Diffusion model of gas in a phase space for moderate Knudsen numbers”, Math. Models Comp. Simul., 5:2 (2013), 130–144 | DOI | MR | Zbl
[23] S.V. Bogomolov, I.G. Gudich, “Verification of a stochastic diffusion gas model”, Mathematical Models and Computer Simulations, 6:3 (2014), 305–316 | DOI | MR
[24] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Micro-macro Kolmogorov-Fokker-Planck models for a hard-sphere gas”, Math. Mod. Comp. Simul., 8:5 (2016), 533–547 | DOI | MR | Zbl
[25] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Meso-macro models for a hard sphere gas”, Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016 (Crete Island, Greece, 2016), v. 2, 3121–3138
[26] B.N. Chetverushkin, “Resolution limits of continuous media mode and their mathematical formulations”, Math. Mod. Comp. Simul., 5:3 (2013), 266–279 | DOI | MR | Zbl
[27] T.G. Elizarova, Quasi-Gas Dynamic Equations, Springer, 2009, 283 pp. | MR | Zbl
[28] H. Brenner, “Bi-velocity hydrodynamics”, Physica A: Statistical Mechanics and its Applications, 388 (2009), 3391–3398 | DOI | MR
[29] J. Mathiaud, L. Mieussens, A Fokker-Planck model of the Boltzmann equation with correct Prandtl number, 2015, arXiv: 1503.01246 [math.AP] | MR
[30] K. Morinishi, “A continuum/kinetic hybrid approach for multi-scale flow”, Proc. ECCOMAS CFD 2006 (Egmond an Zee, Netherlands, 2006)
[31] B. Oksendal, Stochastic Differential Equations, 6th edition, Springer, Berlin, 2000, 390 pp. | MR
[32] S.K. Dadzie, J.M. Reese, On the thermodynamics of volume/mass diffusion in fluids, 2011, arXiv: 1202.3169 [math-ph]
[33] S.S. Stepanov, Stochastic world, Springer International Publishing, 2013 | MR | Zbl