Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 120-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a stochastic microscopic collisional model of the motion of charged particles in a strong external magnetic field, a hierarchy of equations of magnetic hydrodynamics is constructed. The transition to increasingly rough approximations occurs in accordance with a decrease in the dimensioning parameter, similar to the Knudsen number in gas dynamics. The result is stochastic and nonrandom macroscopic equations that differ from the magnetic analog of the Navier–Stokes system of equations as well as from the systems of magnetic quasi-hydrodynamics. The main feature of this derivation is a more accurate velocity averaging due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which the intermediate meso model is presented in the phase space. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. Emphasis is placed on clarity of assumptions when moving from one level of detail to another, and not on numerical experiments that contain additional approximation errors.
Keywords: Boltzmann equation, Navier–Stokes equation, random processes, stochastic differential equations with respect to Poisson and Wiener measures, particle method.
Mots-clés : Kolmogorov–Fokker–Planck equation, Lorentz force, magnetohydrodynamic and quasi-gasdynamic equations
@article{MM_2019_31_8_a6,
     author = {S. V. Bogomolov and N. B. Esikova},
     title = {Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--142},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/}
}
TY  - JOUR
AU  - S. V. Bogomolov
AU  - N. B. Esikova
TI  - Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 120
EP  - 142
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/
LA  - ru
ID  - MM_2019_31_8_a6
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%A N. B. Esikova
%T Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field
%J Matematičeskoe modelirovanie
%D 2019
%P 120-142
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/
%G ru
%F MM_2019_31_8_a6
S. V. Bogomolov; N. B. Esikova. Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 120-142. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a6/

[1] B.N. Chetverushkin, N.D'Ascenzo, A.V. Saveliev, V.I. Saveliev, “A kinetic model for magnetogasdynamics”, Math. Models Comput. Simul., 9:1 (2017), 544–553 | DOI | MR

[2] B.N. Chetverushkin, N.D'Ascenzo, A.V. Saveliev, V.I. Saveliev, “Kinetic Model and Magnetogasdynamics Equations”, Comp. Math. Math. Phys., 58:5 (2018), 691–699 | DOI | MR | Zbl

[3] B. N. Chetverushkin, A V. Saveliev, V.I. Saveliev, “A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena”, Comput. Math. Math. Phys., 58:8 (2018), 1384–1394 | DOI | MR | Zbl

[4] A.A. Samarskii, A.V. Zaharov, A.G. Sveshnikov, “Raschet dvizheniia zariazhennogo puchka bolshikh chastits s uchetom sobstvennogo prostranstvennogo zariada puchka”, Doklady akademii nauk, 197:3 (1971), 554–557

[5] V.I. Kolobov, R.R. Arslanbekov, V.V. Aristov, A.A. Frolova, S.A. Zabelok, “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, Journal of Computational Physics, 223:2 (2007), 589–608 | DOI | Zbl

[6] V.I. Bogachev, N.V. Krylov, M. Rekner, S.V. Shaposhnikov, Uravnenia Fokkera-Planka-Kolmogorova, IKI, 2013, 576 pp.

[7] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, “Intermittency in random media”, Sov. Phys. Uspekhi, 30:5 (1987), 353–369 | DOI | DOI | MR

[8] M.H. Gorji, P. Jenny, “Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows”, Journal of Computational Physics, 287 (2015), 110–129 | DOI | MR | Zbl

[9] J. Zhang, D. Zeng, J. Fan, “Analysis of transport properties determined by Langevin dynamics using Green-Kubo formulae”, Physica A: Statistical Mechanics and its Applications, 411 (2014), 104–112 | DOI | MR | Zbl

[10] M.F. Ivanov, V.A. Galburt, “Stokhasticheskii podkhod k chislennomu resheniiu uravneniia Fokkera–Planka”, Matem. modelirovanie, 20:11 (2008), 3–27

[11] V.K. Gupta, M. Torrilhon, “Comparison of relaxation phenomena in binary gas-mixtures of Maxwell molecules and hard spheres”, Computers Mathematics with Applications, 70:1 (2015), 73–88 | DOI | MR

[12] S.V. Bogomolov, “An approach to deriving stochastic gas dynamics models”, Doklady Mathematics, 78 (2008), 929–931 | DOI | MR | Zbl

[13] A.V. Skorokhod, Stochastic Equations for Complex Systems, Kluwer Academic, Dordrecht, 1987 | MR

[14] A.A. Arsen'yev, “On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 400–410 | MR | Zbl

[15] S.V. Bogomolov, “On Fokker-Planck model for the Boltzmann collision integral at the moderate Knudsen numbers”, Math. Mod. Comp. Simul., 1:6 (2009), 739–744 | DOI | MR | Zbl

[16] S.V. Bogomolov, L.V. Dorodnitsyn, “Equations of stochastic quasi-gas dynamics: Viscous gas case”, Math. Models Comp. Simulations, 3:4 (2011), 457–467 | DOI | MR

[17] S.V. Bogomolov, “Stochastic quasi gas dynamics equations as a base for particle methods”, Proc. V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010 (Lisbon, Portugal, 2010) | MR

[18] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Rev. Modern. Phys., 15:1 (1943), 1–89 | DOI | MR | Zbl

[19] J.G. Kirkwood, “The statistical mechanical theory of transport processes”, J. Chem. Phys., 14:3 (1946), 180–201 | DOI

[20] C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, Cambridge University Press, 2000 | MR | Zbl

[21] A.V. Skorokhod, Stochastic Equations for Complex Systems, Kluwer Academic, Dordrecht, 1987 | MR

[22] S.V. Bogomolov, I.G. Gudich, “Diffusion model of gas in a phase space for moderate Knudsen numbers”, Math. Models Comp. Simul., 5:2 (2013), 130–144 | DOI | MR | Zbl

[23] S.V. Bogomolov, I.G. Gudich, “Verification of a stochastic diffusion gas model”, Mathematical Models and Computer Simulations, 6:3 (2014), 305–316 | DOI | MR

[24] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Micro-macro Kolmogorov-Fokker-Planck models for a hard-sphere gas”, Math. Mod. Comp. Simul., 8:5 (2016), 533–547 | DOI | MR | Zbl

[25] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Meso-macro models for a hard sphere gas”, Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016 (Crete Island, Greece, 2016), v. 2, 3121–3138

[26] B.N. Chetverushkin, “Resolution limits of continuous media mode and their mathematical formulations”, Math. Mod. Comp. Simul., 5:3 (2013), 266–279 | DOI | MR | Zbl

[27] T.G. Elizarova, Quasi-Gas Dynamic Equations, Springer, 2009, 283 pp. | MR | Zbl

[28] H. Brenner, “Bi-velocity hydrodynamics”, Physica A: Statistical Mechanics and its Applications, 388 (2009), 3391–3398 | DOI | MR

[29] J. Mathiaud, L. Mieussens, A Fokker-Planck model of the Boltzmann equation with correct Prandtl number, 2015, arXiv: 1503.01246 [math.AP] | MR

[30] K. Morinishi, “A continuum/kinetic hybrid approach for multi-scale flow”, Proc. ECCOMAS CFD 2006 (Egmond an Zee, Netherlands, 2006)

[31] B. Oksendal, Stochastic Differential Equations, 6th edition, Springer, Berlin, 2000, 390 pp. | MR

[32] S.K. Dadzie, J.M. Reese, On the thermodynamics of volume/mass diffusion in fluids, 2011, arXiv: 1202.3169 [math-ph]

[33] S.S. Stepanov, Stochastic world, Springer International Publishing, 2013 | MR | Zbl