Graphs for the replicator equations and "tragedy of common resource"
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 101-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Appeared active users, which require the solution of inverse problems on the graph with uncertainty for modeling processes in the economic sphere. Such tasks earlier mathematicians were not considered. There was provided a connection replicator systems of equations (RS) with the stated theme. The exact and asymptotic solutions were developed in the case of a «hard» RS equations. The effect of «a priori» dying clone and boundary layer for small values of time were discovered. There was the analogy with similar structures in the economy the effect of the existence of "shadow invisible" super-consumers described was.
Keywords: tragedy of common resource, the replicator systems of equations, real structures in economy.
@article{MM_2019_31_8_a5,
     author = {N. K. Volosova and A. K. Volosova and K. A. Volosov and S. P. Vakulenko},
     title = {Graphs for the replicator equations and "tragedy of common resource"},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--119},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a5/}
}
TY  - JOUR
AU  - N. K. Volosova
AU  - A. K. Volosova
AU  - K. A. Volosov
AU  - S. P. Vakulenko
TI  - Graphs for the replicator equations and "tragedy of common resource"
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 101
EP  - 119
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a5/
LA  - ru
ID  - MM_2019_31_8_a5
ER  - 
%0 Journal Article
%A N. K. Volosova
%A A. K. Volosova
%A K. A. Volosov
%A S. P. Vakulenko
%T Graphs for the replicator equations and "tragedy of common resource"
%J Matematičeskoe modelirovanie
%D 2019
%P 101-119
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a5/
%G ru
%F MM_2019_31_8_a5
N. K. Volosova; A. K. Volosova; K. A. Volosov; S. P. Vakulenko. Graphs for the replicator equations and "tragedy of common resource". Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 101-119. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a5/

[1] H. Haken, Information and self-organization. A macroscopic approach to complex systems, Springer-Verlag, Berlin, 2005 | MR

[2] I.V. Andrianov, R.G. Barantsev, L.I. Manevich, Asimptoticheskaia matematika i sinergetika, Editorial URSS, M., 2004, 308 pp.

[3] M. Eigen, P. Schuster, “The hypercycle. A principle of natural self-organization. Part: Emergence of the hypercycle”, Naturwissenschaften, 64:11 (1977), 541–565 | DOI

[4] N. Lehman, N. Vaidya, M.L. Manapat, “Spontaneous network formation among cooperative RNA replications”, Nature, 2012

[5] A.S. Bratus, A.S. Novozhilov, “A note on the replicator equation with explicit space and global regulation”, Mathematical Biosciences and Engineering, 8:3 (2011) | DOI | MR | Zbl

[6] J. Hofbauer, K. Sigmund, Evolutionary Games and Population dynamics, Cambridge University Press, 1998 | MR | Zbl

[7] W. Jansen, “A permanence theorem for replicator and Lotka-Volterra systems”, Mathematical biology, 25 (1987), 411–427 | DOI | MR

[8] A.K. Volosova, Matematicheskoe modelirovanie nelineinoi dinamiki otkrytoi sistemy gipertsikla, Avtoreferat dissert. ... kand. fiz.-mat. nauk, MIIT, M., 2011

[9] N.N. Bautin, E.A. Leontonovich, Metody i priemy kachestvennogo issledovaniia dinamicheskikh sistem na ploskosti, 2-e izd., Fizmatlit, M., 2003, 296 pp.

[10] K.A. Volosov, Metodika analiza evoliutsionnykh sistem s raspredelennymi parametrami, Avtoref. dissert. ... dokt. fiz.-mat. nauk, MIEM, M., 2007

[11] V.G. Danilov, V.P. Maslov, K.A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes, Kluver Academic publishers, Dordrecht–Boston–London, 1995 | MR

[12] G.P. Karev, The HKV method of solving of replications and models of biological populations and communities, National Center for Biotechnology Information, National Institute of Health, Bidg. 38 A, Rm. N 511N, 8600 Rockville Pike, Bethesda, MD 20894, USA

[13] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman Hall/CRC Press, Boca Raton–London, 2004 | MR | Zbl

[14] F.K. Berezovskaya, L.G. Kareva, G.P. Karev, Is it possible to prevent the "Tragedy of Common Resource"?, Math. Biolog. Bioinform., 7:1 (2012), 30–44 | DOI

[15] N.N. Moiseev, Byt ili ne byt chelovechestvu?, Ulianovskii Dom pechati, M., 1999, 288 pp.

[16] V.P. Maslov, Kvantovaia ekonomika, Nauka, M., 2006, 92 pp.

[17] A.V. Shcherbakov, “Ekonomika Chernavskogo”, Kompiuternye issledovaniia i modelirovanie, 9:3 (2017), 397–417

[18] N.K. Volosova, A.K. Volosova, K.A. Volosov, S.P. Vakulenko, “To the question of “the tragedy of exhaustion of the common resource””, LXXI international conf. “Herzen readings” (Herzen Russian state pedagogical University, St.-Petersburg, 2018, 9–13.04), 60–74

[19] N.K. Volosova, A.K. Volosova, K.A. Volosov, S.P. Vakulenko, “To the question of “the tragedy of exhaustion of the common resource””, Thesis of reports. International conference on differential equations and dynamical systems (Suzdal, 2018, 6–11 July), 63