Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 79-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the development and application of the filling cells method for the hydrodynamics problems solution with complicated geometry of the computational domain, in particular, liquid, to increase the smoothness and accuracy of a finite-difference solution. The spatial-two-dimensional flow problem of a viscous fluid between two coaxial semi-cylinders and the spatial-three-dimensional problem of wave propagation in the coastal zone demonstrate the possibilities of the proposed method. The rectangular grids are used to solve these problems, taking into account the filling of cells. The approximation of problems have been used splitting schemes in time for physical processes and the approximation in spatial variables is made using the balance method, taking into account the filling of cells and without it. Analytical solution describing the Taylor–Couette flow is used as a reference to assess the accuracy of the numerical solution of the first problem. The simulation was performed on a sequence of condensing computational grids with the following dimensions: $11\times21$, $21\times41$, $41\times81$ and $81\times161$ nodes in the case of using the method and without using it. In the case of the direct use of rectangular grids (stepwise approximation of boundaries), the relative error of the calculations reaches $70\%$; under the same conditions, the use of the proposed method allows to reduce the error to $6\%$. It is shown that splitting up rectangular grid by $2$$8$ times in each of the spatial directions does not lead to the same increase of the numerical solutions accuracy, obtained taking into account the filling of the cells.
Keywords: splitting schemes for physical processes, the Taylor–Couette flow, the error of numerical solution.
@article{MM_2019_31_8_a4,
     author = {A. I. Sukhinov and A. E. Chistyakov and E. A. Protsenko and V. V. Sidoryakina and S. V. Protsenko},
     title = {Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--100},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a4/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - E. A. Protsenko
AU  - V. V. Sidoryakina
AU  - S. V. Protsenko
TI  - Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 79
EP  - 100
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a4/
LA  - ru
ID  - MM_2019_31_8_a4
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A E. A. Protsenko
%A V. V. Sidoryakina
%A S. V. Protsenko
%T Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain
%J Matematičeskoe modelirovanie
%D 2019
%P 79-100
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a4/
%G ru
%F MM_2019_31_8_a4
A. I. Sukhinov; A. E. Chistyakov; E. A. Protsenko; V. V. Sidoryakina; S. V. Protsenko. Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 79-100. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a4/

[1] A.I. Sukhinov, A.E. Chistyakov, E.F. Timofeeva, A.V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR

[2] A.I. Sukhinov, A.A. Sukhinov, “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models”, Parallel Computational Fluid Dynamics 2004: Multidisciplinary Applications, 2005, 231–238 | DOI

[3] A.V. Nikitina, M.V. Puchkin, I.S. Semenov, A.I. Sukhinov, G.A. Ugolnitskii, A.B. Usov, A.E. Chistiakov, “Differentsialno-igrovaia model predotvrashcheniia zamorov v melkovodnykh vodoemakh”, Upravlenie bolshimi sistemami, 55 (2015), 343–361

[4] A.I. Sukhinov, A.E. Chistyakov, E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System”, Mathematical Models and Computer Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl

[5] A.S. Monin, “Turbulence and microstructure in the ocean”, Physics-Uspekhi, 16:1 (1973), 121–131 | DOI | DOI

[6] Yu.I. Shokin, L.B. Chubarov, An.G. Marchuk, K.V. Simonov, Vychislitel'nyi eksperiment v probleme tsunami, Nauka. Sib. otdeltnie, Novosibirsk, 1989, 164 pp.

[7] B.N. Chetverushkin, M.V. Yakobovskiy, “Vychislitelnye algoritmy i arkhitektura sistem vysokoy proizvoditelnosti”, Preprinty IPM im. M.V. Keldysha, 2018, 052, 12 pp.

[8] L.D. Landau, E.M. Lifshits, Gidrodinamika, Nauka, Gl. red. fiz-mat. lit., M., 1986, 736 pp.

[9] M.M. Krasnov, P.A. Kuchugov, M.E. Ladonkina, V.F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming method”, Mathematical Models and Computer Simulations, 9:5 (2017), 529–543 | DOI | MR

[10] O.Yu. Milyukova, V.F. Tishkin, “A multigrid method for a heat equation with discontinuous coefficients with a special choice of grids”, Mathematical Models and Computer Simulations, 8:2 (2016), 118–128 | DOI | MR

[11] V.A. Gasilov, I.V. Gasilova, L.V. Klochkova, Yu.A. Poveshchenko, V.F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Computational Mathematics and Mathematical Physics, 55:8 (2015), 1310–1323 | DOI | DOI | MR | Zbl

[12] O.M. Belotserkovskiy, Turbulentnost: novye podkhody, Nauka, M., 2003, 286 pp.

[13] O.M. Belotserkovskii, V.A. Gushchin, V.V. Shchennikov, “Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid USSR”, Computational Mathematics and Mathematical Physics, 15:1 (1975), 190–200 | DOI | Zbl

[14] O.M. Belotserkovskiy, V.A. Gushchin, V.N. Kon'shin, “The splitting method for investigating flows of a stratified liquid with a free surface”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 181–191 | DOI | Zbl

[15] A.I. Sukhinov, A.E. Chistyakov, N.A. Fomenko, “Metodika postroyeniya raznostnykh skhem dlia resheniia zadach diffuzii-konvektsii-reaktsii, uchityvaiushchikh stepen zapolnennosti kontrolnykh iacheek”, Izvestiia YUFU. Tekhnicheskie nauki, 2013, no. 4 (141), 87–98

[16] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc, NY-Basel, 2001, 761 pp. | MR | Zbl

[17] A.A. Samarskiy, P.N. Vabishchevich, Chislennye metody resheniia zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 247 pp.

[18] A.A. Samarskiy, E.S. Nikolayev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[19] A.I. Sukhinov, A.E. Chistyakov, “Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a NonSelfAdjoint Operator”, Mathematical Models and Computer Simulations, 4:4 (2012), 398–409 | DOI | MR

[20] S.V. Vallander, Lektsii po gidroaeromekhanike, Ucheb. posobiye, Izd-vo LGU, L., 1978, 296 pp.

[21] I.S. Menshov, M.A. Kornev, “Free boundary method for numerical solving gas dynamics equations in domains with varying geometry”, Math. Models Comput. Simul., 26:6 (2014), 612–621 | DOI | MR | Zbl

[22] A.E. Lutsky, I.S. Menshov, Ya.V. Khankhasaeva, “Numerical simulation of the wake influence on the flow around truncated cone”, Math. Models Comput. Simul., 9:1 (2017), 92–100 | DOI | MR | Zbl