Molecular dynamic calculation of technical gases macroparameters on example of argon, nitrogen, hydrogen and methane
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 44-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to molecular dynamics calculations of the properties of technical gases, the study of which is a traditional problem of the physics of matter. At present, there is an increased interest in this problem in connection with the development of nanotechnologies and their introduction into various industries. The properties of gas required for modeling are expressed in the form of a set of macroparameters, including kinetic coefficients, parameters of the equation of state, and values of kinetic, potential, total, and internal energies. The study was performed for such technical gases as argon, hydrogen, nitrogen and methane at a pressure of 1 atm, in the temperature range of 100–400 K. The obtained calculated data on the macroparameters of gases are in good agreement with the known theoretical estimates and experimental data.
Keywords: molecular dynamics, macroparameters of gas medium, technical gases, argon, nitrogen, hydrogen, methane.
@article{MM_2019_31_8_a2,
     author = {V. O. Podryga and E. V. Vikhrov and S. V. Polyakov},
     title = {Molecular dynamic calculation of technical gases macroparameters on example of argon, nitrogen, hydrogen and methane},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--60},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a2/}
}
TY  - JOUR
AU  - V. O. Podryga
AU  - E. V. Vikhrov
AU  - S. V. Polyakov
TI  - Molecular dynamic calculation of technical gases macroparameters on example of argon, nitrogen, hydrogen and methane
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 44
EP  - 60
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a2/
LA  - ru
ID  - MM_2019_31_8_a2
ER  - 
%0 Journal Article
%A V. O. Podryga
%A E. V. Vikhrov
%A S. V. Polyakov
%T Molecular dynamic calculation of technical gases macroparameters on example of argon, nitrogen, hydrogen and methane
%J Matematičeskoe modelirovanie
%D 2019
%P 44-60
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a2/
%G ru
%F MM_2019_31_8_a2
V. O. Podryga; E. V. Vikhrov; S. V. Polyakov. Molecular dynamic calculation of technical gases macroparameters on example of argon, nitrogen, hydrogen and methane. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 44-60. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a2/

[1] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley Sons, NY, 1964, 1249 pp.

[2] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, NY, 1987, 385 pp. | Zbl

[3] A.N. Lagar'kov, V.M. Sergeev, “Molecular dynamics method in statistical physics”, Sov. Phys. Usp., 21:7 (1978), 566–588 | DOI | DOI

[4] J.M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.

[5] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, NY, 2002, 638 pp.

[6] D.C. Rapaport, The Art of Molecular Dynamics Simulations, Second Edition, Cambridge University Press, 2004, 565 pp.

[7] G.E. Norman, V.V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl

[8] L. Verlet, “Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[9] J.E. Lennard-Jones, “Cohesion”, Proc. of the Physical Soc., 43:5 (1931), 461–482 | DOI

[10] G. Von Mie, “Zur kinetischen theorie der einatomigen korper”, Ann. Phys. Leipzig, 11:8 (1903), 657–697.

[11] L.R. Fokin, A.N. Kalashnikov, “The transport properties of an N2-H2 mixture of rarefied gases in the EPIDIF database”, High Temperature, 47:5 (2009), 643–655 | DOI

[12] L.R. Fokin, A.N. Kalashnikov, A. F. Zolotukhina, “Transport properties of mixtures of rarefied gases. Hydrogen-methane system”, J. of Engineering Physics and Thermophysics, 84:6 (2011), 1408–1420 | DOI

[13] L.R. Fokin, A.N. Kalashnikov, “Transport properties of a rarefied CH4-N2 gas mixture”, Journal of Engineering Physics and Thermophysics, 89:1 (2016), 249–259 | DOI

[14] K. Meier, A. Laesecke, S. Kabelac, “Transport coefficients of the Lennard-Jones model fluid. III. Bulk viscosity”, J. Chem. Phys., 122:1 (2005), 014513 | DOI

[15] K. Meier, Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid, PhD Thesis, Shaker Publishers, Aachen, 2002, 265 pp.

[16] D. Levesque, L. Verlet, J. Kurkijarvi, “Computer “experiments” on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point”, Phys. Rev. A, 7:5 (1973), 1690–1700 | DOI

[17] V.O. Podryga, “Opredelenie makroparametrov realnogo gaza metodami molekuliarnoi dinamiki”, Matematicheskoe modelirovanie, 27:7 (2015), 80–90 | Zbl

[18] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI

[19] E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. P.J. Linstrom, W.G. Mallard, National Institute of Standards and Technology, Gaithersburg, MD, 20899 http://webbook.nist.gov | Zbl

[20] I.K. Kikoin (red.), Tablitsy fizicheskikh velichin, Spravochnik, Atomizdat, M., 1976, 1008 pp.

[21] E.B. Winn, “The Temperature Dependence of the Self-Diffusion Coefficients of Argon, Neon, Nitrogen, Oxygen, Carbon Dioxide, and Methane”, Phys. Rev., 80:6 (1950), 1024–1027 | DOI

[22] F. Hutchinson, “Self-Diffusion in Argon”, J. Chem. Phys., 17:11 (1949), 1081–1086 | DOI

[23] V.G. Fastovskii, A.E. Rovinskii, Iu.V. Petrovskii, Inertnye gazy, Atomizdat, M., 1972, 352 pp.

[24] N.B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, izdanie vtoroe, dopolnennoe, Nauka, M., 1972, 720 pp.

[25] V.V. Sychev, A.A. Vasserman, A.D. Kozlov, G.A. Spiridonov, V.A. Tsymarnyi, Termodinamicheskie svoistva azota. GSSSD, Seriia monografiia, Izd-vo standartov, M., 1977

[26] GSSSD 4-78. Azot zhidkii i gazoobraznyi. Plotnost, entalpiia, entropiia i izobarnaia teploemkost pri temperaturakh 70–1500 K i davleniiakh 0.1–100 MPa, Izd-vo standartov, M., 1978

[27] A.A. Vigasin, V.E. Liusternik, L.R. Fokin, GSSSD 49-83. Azot. Vtoroi virialnyi koeffitsient, koeffitsienty dinamicheskoi viazkosti, teploprovodnosti, samodiffuzii i chislo Prandtlia razrezhennogo gaza v diapazone temperatur 65–2500 K. Tablitsy standartnykh spravochnykh dannykh, Izd-vo standartov, M., 1984

[28] A.D. Kozlov, V.M. Kuznetsov i dr., GSSSD 89-85. Azot. Koefficienty dinamicheskoi viazkosti i teploprovodnosti pri temperaturakh 65–1000 Kid avleniiakh ot sostoianiia razrezhennogo gaza do 200 MPa. Tablitsy standartnykh spravochnykh dannykh, Izd-vo standartov, M., 1986

[29] V.M. Zhdanov, M.Ia. Alievskii, Protsessy perenosa i relaksatsii v molekuliarnykh gazakh, Nauka. Gl. red. fiz.-mat. lit., M., 1989, 336 pp.

[30] A.P. Babichev, N.A. Babushkina, A.M. Bratkovskii i dr., Fizicheskie velichiny, Spravochnik, eds. I.S. Grigoreva, E.Z. Meilihova, Energoatomizdat, M., 1991, 1232 pp.

[31] M.S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases”, Physics of fluids, 24 (2012), 066102, 23 pp. | DOI