On monotonic differential schemes
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 21-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method of construction of monotonic differential schemes for solving the simplest partial differential equations of elliptic and parabolic types with first derivatives and a small parameter at highest derivative is suggested. For this, the concept of adaptive artificial viscosity (AAV) is introduced. The AAV was used for construction of monotonic differential schemes of the approximation order $O(h^4)$ for the problem with boundary layer and $O(\tau^2+h^2)$ for Burgers equation, where $h$ and $\tau$ are mesh steps in space and time correspondingly. Samarsky–Golant approximation schemes (or schemes with ordered differences) are used out of the domains of large gradients. Importance of usage of second order time schemes is outlined. Numerical results are presented.
Keywords: finite difference scheme, monotone schemes, adaptive artificial viscosity.
@article{MM_2019_31_8_a1,
     author = {I. V. Popov},
     title = {On monotonic differential schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--43},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/}
}
TY  - JOUR
AU  - I. V. Popov
TI  - On monotonic differential schemes
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 21
EP  - 43
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/
LA  - ru
ID  - MM_2019_31_8_a1
ER  - 
%0 Journal Article
%A I. V. Popov
%T On monotonic differential schemes
%J Matematičeskoe modelirovanie
%D 2019
%P 21-43
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/
%G ru
%F MM_2019_31_8_a1
I. V. Popov. On monotonic differential schemes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 21-43. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/

[1] Samarskii A. A., “Monotonic difference schemes for elliptic and parabolic equations in the case of a non-self adjoint elliptic operator”, USSR Comp. Math. Math. Physics, 5:3 (1965), 212–217 | DOI | MR

[2] Golant E. I., “O sopryazhennykh semeystvakh raznostnykh skhem dlya uravneniy parabolicheskogo tipa s mladshimi chlenami”, Zhurnal vychislitel`noy matematiki i matematicheskoy fiziki, 18:5 (1969), 1162–1169 (in Russian)

[3] Il'in A.M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Mathematical notes of the Academy of Sciences of the USSR, 6:2 (1969), 596–602 | DOI | Zbl

[4] Tikhonov A. N., Samarskii A. A., “Homogeneous difference schemes on non-uniform nets”, USSR Computational Mathematics and Mathematical Physics, 2:5 (1963), 927–953 | DOI | MR | Zbl

[5] Shishkin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Proceedings of the Steklov Institute of Mathematics, 259, Supplement 2 (2007), S213–S230 | DOI | MR | Zbl

[6] Andreev V. B., Savin I. A., “On the convergence, uniform with respect to the small parameter, of A.A. Samarskii's monotone scheme and its modifications”, Comp. Math. Math. Phys., 35:5 (1995), 581–591 | MR | Zbl

[7] Andreev V. B., Savin I. A., “The computation of boundary flow with uniform accuracy with respect to a small parameter”, Comp. Math. Math. Phys., 36:12 (1996), 1687–1692 | MR | Zbl

[8] Savin I. A., Ravnomernye setochnye metody dlia nekotorykh singuliarno-vozmushchennykh uravnenii, Dissertatsiia k.f.-m.n., M., 1996

[9] Goncharov A. L., Fryazinov I. V., “Difference schemes on a nine-point “cross” pattern for solving the Navier-Stokes equations”, U.S.S.R. Comp. Math. Math. Phys., 28:3 (1988), 164–172 | DOI | MR | Zbl

[10] Mazhorova O. S., Marchenko M. P., Friazinov I. V., “Monotoniziruiushchie reguliarizatory i matrichnye metody resheniia uravneniia Navie-Stoksa dlia neszhimaemoi zhidkosti”, Matematicheskoe modelirovanie, 6:12 (1994), 97–116

[11] Tolstykh A. I., Compact Difference Schemes and Their Application to Aerohydrodynamic Problems, Nauka, M., 1990

[12] Volkov P. K., Pereverzev A. V., “Metod konechnykh elementov dlia resheniia kraevykh zadach reguliarizovannykh uravnenii neszhimaemoi zhidkosti v peremennykh «skorost-davlenie»”, Matematicheskoe modelirovanie, 15:3 (2003), 15–28

[13] Fletcher C. A. J., Computational techniques for fluid dynamics, v. 1, 2, Springer-Verlag, 1991 | MR | Zbl