Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_8_a1, author = {I. V. Popov}, title = {On monotonic differential schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--43}, publisher = {mathdoc}, volume = {31}, number = {8}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/} }
I. V. Popov. On monotonic differential schemes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 21-43. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a1/
[1] Samarskii A. A., “Monotonic difference schemes for elliptic and parabolic equations in the case of a non-self adjoint elliptic operator”, USSR Comp. Math. Math. Physics, 5:3 (1965), 212–217 | DOI | MR
[2] Golant E. I., “O sopryazhennykh semeystvakh raznostnykh skhem dlya uravneniy parabolicheskogo tipa s mladshimi chlenami”, Zhurnal vychislitel`noy matematiki i matematicheskoy fiziki, 18:5 (1969), 1162–1169 (in Russian)
[3] Il'in A.M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Mathematical notes of the Academy of Sciences of the USSR, 6:2 (1969), 596–602 | DOI | Zbl
[4] Tikhonov A. N., Samarskii A. A., “Homogeneous difference schemes on non-uniform nets”, USSR Computational Mathematics and Mathematical Physics, 2:5 (1963), 927–953 | DOI | MR | Zbl
[5] Shishkin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Proceedings of the Steklov Institute of Mathematics, 259, Supplement 2 (2007), S213–S230 | DOI | MR | Zbl
[6] Andreev V. B., Savin I. A., “On the convergence, uniform with respect to the small parameter, of A.A. Samarskii's monotone scheme and its modifications”, Comp. Math. Math. Phys., 35:5 (1995), 581–591 | MR | Zbl
[7] Andreev V. B., Savin I. A., “The computation of boundary flow with uniform accuracy with respect to a small parameter”, Comp. Math. Math. Phys., 36:12 (1996), 1687–1692 | MR | Zbl
[8] Savin I. A., Ravnomernye setochnye metody dlia nekotorykh singuliarno-vozmushchennykh uravnenii, Dissertatsiia k.f.-m.n., M., 1996
[9] Goncharov A. L., Fryazinov I. V., “Difference schemes on a nine-point “cross” pattern for solving the Navier-Stokes equations”, U.S.S.R. Comp. Math. Math. Phys., 28:3 (1988), 164–172 | DOI | MR | Zbl
[10] Mazhorova O. S., Marchenko M. P., Friazinov I. V., “Monotoniziruiushchie reguliarizatory i matrichnye metody resheniia uravneniia Navie-Stoksa dlia neszhimaemoi zhidkosti”, Matematicheskoe modelirovanie, 6:12 (1994), 97–116
[11] Tolstykh A. I., Compact Difference Schemes and Their Application to Aerohydrodynamic Problems, Nauka, M., 1990
[12] Volkov P. K., Pereverzev A. V., “Metod konechnykh elementov dlia resheniia kraevykh zadach reguliarizovannykh uravnenii neszhimaemoi zhidkosti v peremennykh «skorost-davlenie»”, Matematicheskoe modelirovanie, 15:3 (2003), 15–28
[13] Fletcher C. A. J., Computational techniques for fluid dynamics, v. 1, 2, Springer-Verlag, 1991 | MR | Zbl