Modelling Russian users' political preferences
Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present two machine learning models that can predict Russian VKontakte users' political preferences. They imply operationing at the users-level. We consider thoroughly its different applications; one of them is public opinion monitoring. To demonstrate it, we test them on the sample of 22 mil of Russian users of age. Finally, we retrieve two estimations of public opinion. In case we value the outcome of the 2018 Presidential election by these estimations, we get MAE of 12 and 19.4 percent correspondingly. Moreover, one of the algorithms finds correctly the first three places. Another prominent utility relates to the calibration of opinion dynamics models where we can use scores generated by the machine learning algorithms to estimate users' opinions numerically.
Keywords: users' political leaning prediction, online social networks analysis, opinion dynamics, machine learning, public opinion.
@article{MM_2019_31_8_a0,
     author = {I. V. Kozitsin and A. G. Chkhartishvili and A. M. Marchenko and D. O. Norkin and S. D. Osipov and I. A. Uteshev and V. L. Goiko and R. V. Palkin and M. G. Myagkov},
     title = {Modelling {Russian} users' political preferences},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_8_a0/}
}
TY  - JOUR
AU  - I. V. Kozitsin
AU  - A. G. Chkhartishvili
AU  - A. M. Marchenko
AU  - D. O. Norkin
AU  - S. D. Osipov
AU  - I. A. Uteshev
AU  - V. L. Goiko
AU  - R. V. Palkin
AU  - M. G. Myagkov
TI  - Modelling Russian users' political preferences
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 20
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_8_a0/
LA  - ru
ID  - MM_2019_31_8_a0
ER  - 
%0 Journal Article
%A I. V. Kozitsin
%A A. G. Chkhartishvili
%A A. M. Marchenko
%A D. O. Norkin
%A S. D. Osipov
%A I. A. Uteshev
%A V. L. Goiko
%A R. V. Palkin
%A M. G. Myagkov
%T Modelling Russian users' political preferences
%J Matematičeskoe modelirovanie
%D 2019
%P 3-20
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_8_a0/
%G ru
%F MM_2019_31_8_a0
I. V. Kozitsin; A. G. Chkhartishvili; A. M. Marchenko; D. O. Norkin; S. D. Osipov; I. A. Uteshev; V. L. Goiko; R. V. Palkin; M. G. Myagkov. Modelling Russian users' political preferences. Matematičeskoe modelirovanie, Tome 31 (2019) no. 8, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2019_31_8_a0/

[1] L. Phillips, C. Dowling, K. Shaffer, N. Hodas, S. Volkova, Using social media to predict the future: a systematic literature review, 2017, arXiv: 1706.06134 [cs.CY]

[2] D.A. Gubanov, A.G. Chkhartishvili, “A conceptual approach to online social networks analysis”, Automation and Remote Control, 76:8 (2015), 1455–1462 | DOI | MR | Zbl

[3] M. Kosinski, D. Stillwell, T. Graepel, “Private traits and attributes are predictable from digital records of human behavior”, Proceedings of the National Academy of Sciences, 110:15 (2013), 5802–5805 | DOI

[4] H. Schoen, D. Gayo-Avello, P. Takis Metaxas, E. Mustafaraj, M. Strohmaier, P. Gloor, “The power of prediction with social media”, Internet Research, 23:5 (2013), 528–543 | DOI

[5] R.I. Dunbar, V. Arnaboldi, M. Conti, A. Passarella, “The structure of online social networks mirrors those in the offline world”, Social Networks, 43 (2015), 39–47 | DOI

[6] A.V. Proskurnikov, R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part I”, Annual Reviews in Control, 2018 | MR

[7] A.A. Belolipetskii, I.V. Kozitsin, “Dynamic variant of mathematical model of collective behavior”, Journal of Computer and Systems Sciences International, 56:3 (2017), 385–396 | DOI | DOI | MR | Zbl

[8] I.V. Kozitsin, “Generalization of Krasnoshchekov's model for the case of a decomposable matrix of social interactions”, Mathematical Models and Computer Simulations, 10:4 (2018), 398–406 | DOI | MR

[9] I.V. Kozitsin, A.A. Belolipetskii, “Opinion convergence in the Krasnoshchekov model”, The Journal of Mathematical Sociology, 2018, 1–18 | MR

[10] P.S. Krasnoshchekov, “Prosteishaia matematicheskaia model povedeniia. Psikhologiia konformizma”, Matematicheskoe modelirovanie, 10:7 (1998), 76–92

[11] A.V. Proskurnikov, R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part II”, Annual Reviews in Control, 2018 | MR

[12] E.D. Kornilina, A.P. Petrov, “Dynamic model of proximity of positions of social network users”, Mathematical Models and Computer Simulations, 5:3 (2013), 213–219 | DOI | MR | Zbl

[13] P. Barberá, How social media reduces mass political polarization. Evidence from Germany, Spain, and the US, Job Market Paper No 46, New York University, 2014

[14] P. Barberá, “Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data”, Political Analysis, 23:1 (2015), 76–91 | DOI

[15] R. Cohen, D. Ruths, Classifying political orientation on Twitter: It's not easy!, ICWSM 2013

[16] A.P. Mikhailov, V. A. Shvedovskii, A.I. Maslov, V. F. Kovalev, “Obobshchennaia model elektoralnogo povedeniia i ee primenenie k izucheniiu etnopoliticheskikh konfliktov”, Matematicheskoe modelirovanie, 15:8 (2003), 39–56

[17] A. Tumasjan, T.O. Sprenger, P. G. Sandner, I.M. Welpe, “Predicting elections with twitter: What 140 characters reveal about political sentiment”, Fourth international AAAI conference on weblogs and social media (2010)

[18] A. Boutet, H. Kim, E. Yoneki, What's in Twitter, I know what parties are popular and who you are supporting now!, Social Network Analysis and Mining, 3:4 (2013), 1379–1391 | DOI

[19] https://dataverse.harvard.edu/privateurl.xhtml?token=f30ac99c-98b3-49c5-ac6a-b321b1f35f37

[20] P. Flach, Machine learning: the art and science of algorithms that make sense of data, Cambridge University Press, 2012 | MR | Zbl

[21] D. Frey, “Recent research on selective exposure to information”, Advances in experimental social psychology, 19, Academic Press, 1986, 41–80

[22] A. Chkhartishvili, I. Kozitsin, “Binary Separation Index for Echo Chamber Effect Measuring”, 2018 Eleventh International Conference “Management of large-scale system development”, IEEE, 2018, 1–4

[23] K. Garimella, G. De Francisci Morales, A. Gionis, M. Mathioudakis, “Political discourse on social media: Echo chambers, gatekeepers, and the price of bipartisanship”, Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, 2018, 913–922 | DOI

[24] V. Viugin, Mathematicheskie osnovi mashinnogo obuchenia prognozirovania, Litres, 2017

[25] L. Weng, A. Flammini, A. Vespignani, F. Menczer, “Competition among memes in a world with limited attention”, Scientific reports, 2 (2012), 335 | DOI

[26] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016 | MR | Zbl

[27] C. Castellano, D. Vilone, A. Vespignani, “Incomplete ordering of the voter model on smallworld networks”, EPL (Europhysics Letters), 63:1 (2003), 153 | DOI

[28] V. Amelkin, P. Bogdanov, A.K. Singh, “A distance measure for the analysis of polar opinion dynamics in social networks”, 2017 IEEE 33rd International Conference on Data Engineering (ICDE), IEEE, 2017, 159–162 | DOI | MR

[29] A.P. Mikhailov, A.P. Petrov, N.A. Marevtseva, I.V. Tretiakova, “Development of a Model of Information Dissemination in Society”, Mathematical Models and Computer Simulations, 6:5 (2014), 535–541 | DOI | MR | Zbl

[30] A.P. Petrov, A.I. Maslov, N.A. Tsaplin, “Modeling Position Selection by Individuals during Information Warfare in Society”, Mathematical Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | MR

[31] A.P. Petrov, O.G. Proncheva, “Modeling Propaganda Battle: Decision-Making, Homophily, and Echo Chambers”, Artificial Intelligence and Natural Language, AINL 2018, Communications in Computer and Information Science, 930, eds. Ustalov D., Filchenkov A., Pivovarova L., Zizka J., Springer, Cham, 2018, 197–209 | DOI

[32] A.P. Mikhailov, A.P. Petrov, G.B. Pronchev, O.G. Proncheva, “Modeling a Decrease in Public Attention to a Past One-Time Political Event”, Doklady Mathematics, 97:3 (2018), 247–249 | DOI | DOI

[33] A.P. Mikhailov, N. A. Marevtseva, “Models of Information Warfare”, Mathematical Models and Computer Simulations, 4:3 (2012), 251–259 | DOI