Methods of solution of the game theoretic models of coordination of interests in the fishery regulation
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 127-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamic game-theoretic models for concordance of private and social interests of agents within the framework of the concept of sustainable development of the dynamic system controlled by them are investigated. Within the framework of this concept, the hierarchical control mechanisms — methods of adminstrative control and motivation — are formalized as solutions of hierarchical differential games with phase constraints reflecting the requirements for the state of the controlled dynamic system providing conditions for sustainable development. Administrative control involves the impact of the lead player (the subject of managing sustainable development) on the set of admissible slave controls (the subject of the impact on the controlled dynamic system), and the incentive — on his win function. Mechanisms of administrative and economic management are formalized as computer imitation scenarios. The dynamic models considered in the article are the development of the models for concordance of private and social interests proposed by Yu.B. Germeier and I.A. Vatel. Numerical calculations are carried out and a comparative analysis of the effectiveness of these control mechanisms for the fishing model is fulfilled.
Keywords: differential games, control mechanisms, sustainable development.
Mots-clés : simulation
@article{MM_2019_31_7_a7,
     author = {A. I. Sukhinov and G. A. Ougolnitsky and A. B. Usov},
     title = {Methods of solution of the game theoretic models of coordination of interests in the fishery regulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a7/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - G. A. Ougolnitsky
AU  - A. B. Usov
TI  - Methods of solution of the game theoretic models of coordination of interests in the fishery regulation
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 127
EP  - 142
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a7/
LA  - ru
ID  - MM_2019_31_7_a7
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A G. A. Ougolnitsky
%A A. B. Usov
%T Methods of solution of the game theoretic models of coordination of interests in the fishery regulation
%J Matematičeskoe modelirovanie
%D 2019
%P 127-142
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a7/
%G ru
%F MM_2019_31_7_a7
A. I. Sukhinov; G. A. Ougolnitsky; A. B. Usov. Methods of solution of the game theoretic models of coordination of interests in the fishery regulation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 127-142. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a7/

[1] G.A. Ugol'nitsckii, Upravlenie ustoichivym razvitiem aktivnykh sistem, Izdatelstvo Iuzhnogo Federalnogo Universiteta, Rostov-na-Donu, 2016, 940 pp.

[2] G.A. Ougolnitsky, “Game theoretic formalization of the concept of sustainable development in the hierarchical control systems”, Annals of Operations Research, 220:1 (2014), 69–86 | DOI | MR | Zbl

[3] G.A. Ugol'nitskii, A.B. Usov, “Equilibria in models of hierarchically organized dynamic systems with regard to sustainable development conditions”, Automation and Remote Control, 75:6 (2014), 1055–1068 | DOI | MR | Zbl

[4] S. Demberel, N.N. Olenev, I.G. Pospelov, “K matematicheskoi modeli vzaimodeistviia ekonomicheskikh i ekologicheskikh protsessov”, Matematicheskoe modelirovanie, 15:4 (2003), 107

[5] A.V. Nikitina, A.I. Suchinov, G.A. Ugolnitsky et al., “Optimal control of sustainable development in the biological rehabilitation of the Azov Sea”, Mathematical Models and Computer Simulations, 28:7 (2016), 96–106

[6] A.V. Nikitina, M.V. Puchkin, I.S. Semenov i dr., “Differencialno-igrovaia model predotvrashcheniia zamorov v melkovodnykh vodoemakh”, Upravlenie bolshimi sistemami, 55 (2015), 343–361

[7] E.J. Dockner, S. Jorgensen, N.V. Long, G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, 2000, 396 pp. | MR | Zbl

[8] Iu.B. Germeier, I.A. Vatel, “Igry s ierarkhicheskim vektorom interesov”, Izvestiia AN SSSR. Tekhnicheskaia kibernetika, 1974, no. 3, 54–69

[9] V.N. Burkov, V.I. Opoitsev, “Metaigrovoi podkhod k upravleniiu ierarhicheskimi sistemami”, Avtomatika i telemekhanika, 1974, no. 1, 103–114

[10] V.A. Gorelik, M.A. Gorelov, A.F. Kononenko, Analiz konfliktnykh situatsii v sistemakh upravleniia, Radio i sviaz, M., 1991, 287 pp.

[11] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani (eds.), Algorithmic Game Theory, Cambridge University Press, 2007, 754 pp. | MR | Zbl

[12] G.A. Ugol'nitskii, A.B. Usov, “A study of differential models for hierarchical control systems via their discretization”, Automation and Remote Control, 74:2 (2013), 252–263 | DOI | MR | Zbl

[13] A.N. Rettieva, “Zadacha upravleniia bioresursami s asimmetrichnymi igrokami”, Matematicheskaia teoriia igr i ee prilozheniia, 5:3 (2013), 72–87 | Zbl

[14] V.V. Mazalov, A.N. Rettieva, “Asimmetriia v kooperativnoi zadache upravleniia bioresursami”, Upravlenie bolshimi sistemami, 55 (2015), 280–325

[15] N.S. Ivanko, A.I. Abakumov, “Zadachi upravleniia rybnym promyslom v usloviiakh kvotirovaniia”, Upravlenie bolshimi sistemami, 55 (2015), 224–238