Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_7_a6, author = {S. V. Borzunov and M. Y. Semenov and N. I. Sel'vesyuk and P. A. Meleshenko}, title = {Hysteretic converters with stochastic parameters}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--126}, publisher = {mathdoc}, volume = {31}, number = {7}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/} }
TY - JOUR AU - S. V. Borzunov AU - M. Y. Semenov AU - N. I. Sel'vesyuk AU - P. A. Meleshenko TI - Hysteretic converters with stochastic parameters JO - Matematičeskoe modelirovanie PY - 2019 SP - 109 EP - 126 VL - 31 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/ LA - ru ID - MM_2019_31_7_a6 ER -
S. V. Borzunov; M. Y. Semenov; N. I. Sel'vesyuk; P. A. Meleshenko. Hysteretic converters with stochastic parameters. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 109-126. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/
[1] M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with hysteresis, Springer-Verlag, Berlin–Heidelberg, 1989, 410 pp. | MR | Zbl
[2] I.D. Mayergoyz, G. Bertotti (eds.), The Science of Hysteresis, 3-volume set, 2005, 2097 pp. | MR
[3] F. Ikhouane, J. Rodellar, Systems with Hysteresis Analysis, Identification and Control Using the Bouc-Wen Model, John Wiley Sons, Chichester, 2007, 222 pp. | Zbl
[4] W. Lacarbonara, D. Bernardini, F. Vestroni, “Nonlinear thermomechanical oscillations of shape-memory devices”, International Journal of Solids and Structures, 41:5–6 (2004), 1209–1234 | DOI | Zbl
[5] L.A. Rios, D. Rachinskii, R. Cross, “A model of hysteresis arising from social interaction within a firm”, Journal of Physics: Conference Series, 811:1 (2017), 012011 | DOI | MR
[6] A. Fahsi, M. Belhaq, F. Lakrad, “Suppression of hysteresis in a forced van der Pol-Duffing oscillator”, Communications in Nonlinear Sci. Numer. Simul., 14:4 (2009), 1609–1616 | DOI | MR | Zbl
[7] R. Cross, H. McNamara, A. Pokrovskii, D. Rachinskii, “A new paradigm for modelling hysteresis in macroeconomic flows”, Physica B: Condensed Matter, 403:2–3 (2008), 231-236 | DOI
[8] W. Lacarbonara, F. Vestroni, “Nonclassical Responses of Oscillators with Hysteresis”, Nonlinear Dynamics, 32 (2003), 235–258 | DOI | Zbl
[9] M.A. Janaideh, R. Naldi, L. Marconi, P. Krejči, “A hybrid model for the play hysteresis operator”, Physica B, 430 (2013), 95–98 | DOI
[10] B. Carboni, W. Lacarbonara, “Nonlinear dynamic characterization of a new hysteretic device: experiments and computations”, Nonlinear Dynamics, 83 (2016), 23–39 | DOI
[11] M.E. Semenov, A.M. Solovyov, M.A. Popov, P.A. Meleshenko, “Coupled inverted pendulums: stabilization problem”, Archive of Applied Mechanics, 88 (2018), 517–524 | DOI
[12] F. Ikhouane, J. Rodellar, “On the Hysteretic Bouc-Wen Model”, Nonlinear Dynamics, 42 (2005), 63–78 | DOI | MR | Zbl
[13] W.D. Iwan, “A distributed-element model for hysteresis and its steady-state dynamic response”, Journal of Applied Mechanics, Transactions ASME, 33:4 (1966), 893–900 | DOI
[14] M.F.M. Naser, F. Ikhouane, “Consistency of the Duhem Model with Hysteresis”, Mathematical Problems in Engineering, 2013, 586130, 16 pp. | MR | Zbl
[15] C.-J. Lin, P.-T. Lin, “Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model”, Comp. and Math. with Applications, 64 (2012), 766–787 | DOI
[16] M.A. Krasnosel'skii, V.M. Darinskii, I.V. Emelin, P.P. Zabreiko, E.A. Lifshitz, A.V. Pokrovskii, “Operator-hysteron”, Dokl. AN SSSR, 190 (1970), 29–33
[17] M.E. Semenov, D.V. Shevlyakova, P.A. Meleshenko, “Inverted pendulum under hysteretic control: stability zones and periodic solutions”, Nonlinear Dynamics, 75:1–2 (2014), 247–256 | DOI | MR
[18] M.E. Semenov, P.A. Meleshenko, A.M. Solovyov, A.M. Semenov, “Hysteretic nonlinearity in inverted pendulum problem”, Structural Nonlinear Dynamics and Diagnosis, Selected papers from CSNDD 2012 and CSNDD 2014, Springer Proceedings in Physics, 2015, 463–506 | DOI | MR
[19] M. Belhaq, A. Bichri, J. Der Hogapian, J. Mahfoud, “Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam”, International Journal of NonLinear Mechanics, 2011 | DOI
[20] W. Lacarbonara, M. Talo, B. Carboni, G. Lanzara, “Tailoring of Hysteresis Across Different Material Scales”, Recent Trends in Applied Nonlinear Mechanics and Physics, Springer Proceedings in Physics, 199, ed. M. Belhaq, 227–250 | DOI | MR
[21] D. Rachinskii, Realization of Arbitrary Hysteresis by a Low-dimensional Gradient Flow, 2015, arXiv: 1506.03842v1 [math.DS] | MR
[22] I.D. Mayergoyz, “Mathematical models of hysteresis”, Physical Review Letters, 56:15 (1986), 1518–1521 | DOI | MR
[23] I.D. Mayergoyz, M. Dimian, “Stochastic aspects of hysteresis”, Journal of Physics: Conference Series, 22 (2005), 139–147 | DOI | MR
[24] R. Bouc, “Forced vibration of mechanical systems with hysteresis”, Proceedings of the Fourth Conference on Nonlinear Oscillation (Prague, Czechoslovakia, 1967), 315
[25] R. Bouc, “Modele mathematique d'hysteresis: application aux systemes a un degre de liberte”, Acustica, 24 (1971), 16–25 (in French) | Zbl
[26] Y.K. Wen, “Method for random vibration of hysteretic systems”, Journal of Engineering Mechanics, 102:2 (1976), 249–263
[27] A.E. Charalampakis, V.K. Koumousis, “A Bouc-Wen model compatible with plasticity postulates”, Journal of Sound and Vibration, 322 (2009), 954–968 | DOI
[28] A.K. Kottaria, A.E. Charalampakis, V.K. Koumousi, “A consistent degrading Bouc-Wen model”, Engineering Structures, 60 (2014), 235–240 | DOI
[29] S.A. Belbas, “New hysteresis operators with applications to counterterrorism”, Applied Mathematics and Computation, 170 (2005), 425–439 | DOI | MR | Zbl
[30] A.E. Charalampakis, V.K. Koumousis, “Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm”, J. of Sound and Vibration, 314:3–5 (2008), 571–585 | DOI
[31] A.N. Shiryaev, Probability-1, Springer, 2016, 486 pp. | MR | Zbl
[32] V.A. Zorich, Mathematical Analysis, v. I, Springer, Berlin–Heidelberg, 2015, 616 pp. | MR | Zbl