Hysteretic converters with stochastic parameters
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 109-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of models of hysteretic converters which generalizes the classical definition of backlash to the case when the curves defining it are non-deterministic and have a random distribution is proposed. In this case an output of stochastic converter is defined as a random process. The correctness of the definition of the corresponding converter in terms of a special limit construction is proved. Using such a definition it is possible to determine the output at an arbitrary continuous input. The properties of introduced сonverters are investigated and explicit analytic relations determining the first and second moment (as functions of the corresponding parameters) are presented together with illustrative examples.
Keywords: hysteresis, backlash, hysteresis properties.
@article{MM_2019_31_7_a6,
     author = {S. V. Borzunov and M. Y. Semenov and N. I. Sel'vesyuk and P. A. Meleshenko},
     title = {Hysteretic converters with stochastic parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/}
}
TY  - JOUR
AU  - S. V. Borzunov
AU  - M. Y. Semenov
AU  - N. I. Sel'vesyuk
AU  - P. A. Meleshenko
TI  - Hysteretic converters with stochastic parameters
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 109
EP  - 126
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/
LA  - ru
ID  - MM_2019_31_7_a6
ER  - 
%0 Journal Article
%A S. V. Borzunov
%A M. Y. Semenov
%A N. I. Sel'vesyuk
%A P. A. Meleshenko
%T Hysteretic converters with stochastic parameters
%J Matematičeskoe modelirovanie
%D 2019
%P 109-126
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/
%G ru
%F MM_2019_31_7_a6
S. V. Borzunov; M. Y. Semenov; N. I. Sel'vesyuk; P. A. Meleshenko. Hysteretic converters with stochastic parameters. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 109-126. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a6/

[1] M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with hysteresis, Springer-Verlag, Berlin–Heidelberg, 1989, 410 pp. | MR | Zbl

[2] I.D. Mayergoyz, G. Bertotti (eds.), The Science of Hysteresis, 3-volume set, 2005, 2097 pp. | MR

[3] F. Ikhouane, J. Rodellar, Systems with Hysteresis Analysis, Identification and Control Using the Bouc-Wen Model, John Wiley Sons, Chichester, 2007, 222 pp. | Zbl

[4] W. Lacarbonara, D. Bernardini, F. Vestroni, “Nonlinear thermomechanical oscillations of shape-memory devices”, International Journal of Solids and Structures, 41:5–6 (2004), 1209–1234 | DOI | Zbl

[5] L.A. Rios, D. Rachinskii, R. Cross, “A model of hysteresis arising from social interaction within a firm”, Journal of Physics: Conference Series, 811:1 (2017), 012011 | DOI | MR

[6] A. Fahsi, M. Belhaq, F. Lakrad, “Suppression of hysteresis in a forced van der Pol-Duffing oscillator”, Communications in Nonlinear Sci. Numer. Simul., 14:4 (2009), 1609–1616 | DOI | MR | Zbl

[7] R. Cross, H. McNamara, A. Pokrovskii, D. Rachinskii, “A new paradigm for modelling hysteresis in macroeconomic flows”, Physica B: Condensed Matter, 403:2–3 (2008), 231-236 | DOI

[8] W. Lacarbonara, F. Vestroni, “Nonclassical Responses of Oscillators with Hysteresis”, Nonlinear Dynamics, 32 (2003), 235–258 | DOI | Zbl

[9] M.A. Janaideh, R. Naldi, L. Marconi, P. Krejči, “A hybrid model for the play hysteresis operator”, Physica B, 430 (2013), 95–98 | DOI

[10] B. Carboni, W. Lacarbonara, “Nonlinear dynamic characterization of a new hysteretic device: experiments and computations”, Nonlinear Dynamics, 83 (2016), 23–39 | DOI

[11] M.E. Semenov, A.M. Solovyov, M.A. Popov, P.A. Meleshenko, “Coupled inverted pendulums: stabilization problem”, Archive of Applied Mechanics, 88 (2018), 517–524 | DOI

[12] F. Ikhouane, J. Rodellar, “On the Hysteretic Bouc-Wen Model”, Nonlinear Dynamics, 42 (2005), 63–78 | DOI | MR | Zbl

[13] W.D. Iwan, “A distributed-element model for hysteresis and its steady-state dynamic response”, Journal of Applied Mechanics, Transactions ASME, 33:4 (1966), 893–900 | DOI

[14] M.F.M. Naser, F. Ikhouane, “Consistency of the Duhem Model with Hysteresis”, Mathematical Problems in Engineering, 2013, 586130, 16 pp. | MR | Zbl

[15] C.-J. Lin, P.-T. Lin, “Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model”, Comp. and Math. with Applications, 64 (2012), 766–787 | DOI

[16] M.A. Krasnosel'skii, V.M. Darinskii, I.V. Emelin, P.P. Zabreiko, E.A. Lifshitz, A.V. Pokrovskii, “Operator-hysteron”, Dokl. AN SSSR, 190 (1970), 29–33

[17] M.E. Semenov, D.V. Shevlyakova, P.A. Meleshenko, “Inverted pendulum under hysteretic control: stability zones and periodic solutions”, Nonlinear Dynamics, 75:1–2 (2014), 247–256 | DOI | MR

[18] M.E. Semenov, P.A. Meleshenko, A.M. Solovyov, A.M. Semenov, “Hysteretic nonlinearity in inverted pendulum problem”, Structural Nonlinear Dynamics and Diagnosis, Selected papers from CSNDD 2012 and CSNDD 2014, Springer Proceedings in Physics, 2015, 463–506 | DOI | MR

[19] M. Belhaq, A. Bichri, J. Der Hogapian, J. Mahfoud, “Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam”, International Journal of NonLinear Mechanics, 2011 | DOI

[20] W. Lacarbonara, M. Talo, B. Carboni, G. Lanzara, “Tailoring of Hysteresis Across Different Material Scales”, Recent Trends in Applied Nonlinear Mechanics and Physics, Springer Proceedings in Physics, 199, ed. M. Belhaq, 227–250 | DOI | MR

[21] D. Rachinskii, Realization of Arbitrary Hysteresis by a Low-dimensional Gradient Flow, 2015, arXiv: 1506.03842v1 [math.DS] | MR

[22] I.D. Mayergoyz, “Mathematical models of hysteresis”, Physical Review Letters, 56:15 (1986), 1518–1521 | DOI | MR

[23] I.D. Mayergoyz, M. Dimian, “Stochastic aspects of hysteresis”, Journal of Physics: Conference Series, 22 (2005), 139–147 | DOI | MR

[24] R. Bouc, “Forced vibration of mechanical systems with hysteresis”, Proceedings of the Fourth Conference on Nonlinear Oscillation (Prague, Czechoslovakia, 1967), 315

[25] R. Bouc, “Modele mathematique d'hysteresis: application aux systemes a un degre de liberte”, Acustica, 24 (1971), 16–25 (in French) | Zbl

[26] Y.K. Wen, “Method for random vibration of hysteretic systems”, Journal of Engineering Mechanics, 102:2 (1976), 249–263

[27] A.E. Charalampakis, V.K. Koumousis, “A Bouc-Wen model compatible with plasticity postulates”, Journal of Sound and Vibration, 322 (2009), 954–968 | DOI

[28] A.K. Kottaria, A.E. Charalampakis, V.K. Koumousi, “A consistent degrading Bouc-Wen model”, Engineering Structures, 60 (2014), 235–240 | DOI

[29] S.A. Belbas, “New hysteresis operators with applications to counterterrorism”, Applied Mathematics and Computation, 170 (2005), 425–439 | DOI | MR | Zbl

[30] A.E. Charalampakis, V.K. Koumousis, “Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm”, J. of Sound and Vibration, 314:3–5 (2008), 571–585 | DOI

[31] A.N. Shiryaev, Probability-1, Springer, 2016, 486 pp. | MR | Zbl

[32] V.A. Zorich, Mathematical Analysis, v. I, Springer, Berlin–Heidelberg, 2015, 616 pp. | MR | Zbl