Topology optimization methods in the program complex 3D Printer
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 75-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the scope of the project “Developing the atlas of typical forms of topological optimization of constructions with selected laser melting and its industrial verification” (contract with Ministry of Education and Science № 2016-14-579-0009-492) software, that allows topological optimization of parts with different limitations of objective function and generation and usage of different types of mesh structures to fill part’s volume, is made by participants NUST “MISiS”, NPO “TSNIITMASH”, RFNC “VNIIEF”, Russian Ministry of Education and Science, “Science and Innovation” JSC (SC Rosatom). The article contains description of methods and algorithms of topological optimization of constructions with strain and stress limitations of objective function, that were developed for the benefit of using them in basic version of software.
Keywords: topological optimization, additive technology, generative design.
@article{MM_2019_31_7_a4,
     author = {D. Dyanov and M. Medvedkina and A. Bykov and V. Popov},
     title = {Topology optimization methods in the program complex {3D} {Printer}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--90},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a4/}
}
TY  - JOUR
AU  - D. Dyanov
AU  - M. Medvedkina
AU  - A. Bykov
AU  - V. Popov
TI  - Topology optimization methods in the program complex 3D Printer
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 75
EP  - 90
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a4/
LA  - ru
ID  - MM_2019_31_7_a4
ER  - 
%0 Journal Article
%A D. Dyanov
%A M. Medvedkina
%A A. Bykov
%A V. Popov
%T Topology optimization methods in the program complex 3D Printer
%J Matematičeskoe modelirovanie
%D 2019
%P 75-90
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a4/
%G ru
%F MM_2019_31_7_a4
D. Dyanov; M. Medvedkina; A. Bykov; V. Popov. Topology optimization methods in the program complex 3D Printer. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 75-90. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a4/

[1] A.V. Boldyrev, M.V. Pavelchuk, “Metodika obucheniia topologicheskomu proektirovaniiu konstruktsii na osnove modeli tela peremennoi plotnosti”, Ontologiia proektirovaniia, 6:4(22) (2016), 501–513

[2] X. Huang, Y.M. Xie, Evolutionary topology optimization of continuum structures, John Wiley Sons, UK, 2010, 223 pp. | Zbl

[3] D.N. Chu, Y.M. Xie, A. Hira G.P. Steven, “Evolutionary structural optimization for problems with stiffness constraints”, Finite Elements in Analysis Design, 21:4 (1996), 239–251 | DOI | Zbl

[4] X.Y. Yang, Y.M. Xie , G.P. Steven, O.M. Querin, “Bidirectional evolutionary method for stiffness optimization”, AIAA Journal, 37:11 (1999), 1482–1488 | DOI

[5] X. Huang, Y.M. Xie, “Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials”, Comput. Mech., 43:3 (2009), 393–401 | DOI | MR | Zbl

[6] J.H. Zhu, W.H. Zhang, K.P. Qiu, “Bi-directional evolutionary topology optimization using element replaceable method”, Comput. Mech., 2007

[7] X. Huang, Y.M. Xie, “Evolutionary topology optimization of continuum structures with an additional displacement constraint”, Structural and Multidisciplinary Optimization, 40:1 (2010), 409–416 | DOI | MR | Zbl

[8] M.P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Method and Application, Springer, Berlin, 2003, 370 pp. | MR

[9] M.P. Bendsoe, O. Sigmund, “Material interpolation schemes in topology optimization”, Archive Appl. Mech., 69:9 (1999), 635–654 | MR | Zbl

[10] E. Biykli, A.C. To, “Proportional Topology Optimization: A new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB”, Plos ONE, 2015

[11] W. Prager, “Optimality criteria in structural design”, Proceeding of the National Academy of Sciences of the United State of America, 61:3 (1968), 794–796 | DOI

[12] T.E. Bruns, D.A. Tortorelli, “Topology optimization of non-linear elastic structures and compliant mechanisms”, Comp. Methods in Appl. Mech. Eng., 190:26 (2001), 3443–3459 | DOI | Zbl

[13] J.H. Zhu, W.H. Zhang, K.P. Qiu, “Bi-directional evolutionary topology optimization using element replaceable method”, Comput. Mech., 40:1 (2007), 97–109 | DOI | MR | Zbl

[14] C.S. Jog, “Topology design of structures using a dual algorithm and a constraint on the perimeter”, Inter. J. Num. Meth. Engng., 54:7 (2002), 1007–1019 | DOI | MR | Zbl

[15] C.S. Jog, R.B. Harber, “Stability of finite element models for distributed-parameter optimization and topology design”, Comp. Meth. Appl. Mech. Eng., 130:3 (1996), 203–226 | DOI | MR | Zbl

[16] P. Tanskanen, “The evolutionary structural optimization method: theoretical aspects”, Comput. Meth. Appl. Mech. Engng., 191:47 (2002), 5485–5498 | DOI | Zbl

[17] O. Sigmund, “On the design of compliant mechanisms using topology optimization”, Mech. Struct. Mach., 25:4 (1997), 493–524 | DOI

[18] X.Y. Yang, Y.M. Xie, G.T. Liu, P.J. Clarcson, “Perimeter control of the bidirectional evolutionary optimization method”, Struct. Multidisc. Optim., 24:6 (2002), 430–440 | DOI

[19] E. Hinton, H. Sien, “Fully Stressed Topological Design of Structures using an Evolutionary Procedure”, Engineering Computations, 12:3 (1995), 229–244 | DOI | Zbl