Compact finite-difference scheme for differential relations' approximation
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 58-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential relations include both differential operators and solvers of boundary value problems. The formulas of compact finite-difference approximations for differential relations of the first and second orders are obtained. Three-point stencils are used. Like classical finite difference schemes, the tridiagonal matrix is inverted to implement the scheme. However, compact schemes provide significantly higher accuracy and order of the 4th approximation instead of the 2nd.
Keywords: compact finite-difference scheme, approximation order, operator's symbol, stencil.
@article{MM_2019_31_7_a3,
     author = {V. A. Gordin},
     title = {Compact finite-difference scheme for differential relations' approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/}
}
TY  - JOUR
AU  - V. A. Gordin
TI  - Compact finite-difference scheme for differential relations' approximation
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 58
EP  - 74
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/
LA  - ru
ID  - MM_2019_31_7_a3
ER  - 
%0 Journal Article
%A V. A. Gordin
%T Compact finite-difference scheme for differential relations' approximation
%J Matematičeskoe modelirovanie
%D 2019
%P 58-74
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/
%G ru
%F MM_2019_31_7_a3
V. A. Gordin. Compact finite-difference scheme for differential relations' approximation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 58-74. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/

[1] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, Journal of Computational Physics, 103:1 (1992), 16-42 | DOI | MR | Zbl

[2] V.A. Gordin, Kak eto poschitat?, MTsNMO, M., 2005, 280 pp.; 2013, 733 pp.

[3] V.A. Gordin, Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.

[4] V.A. Gordin, Differentsialnye i raznostnye uravneniia. Kakie iavleniia oni opisyvaiut i kak ikh reshat, Izdatelskii dom VShE, M., 2016, 530 pp.

[5] V.A. Gordin, “About inertia of measurement devices”, Research Activities in Atmospheric and Oceanic Modeling, 2018, 1.15–1.16

[6] P.H. Cowell, A.C.D. Crommelin, “Investigation of the motion of Halley's comet from 1759 to 1910”, Appendix to Greenwich Observations for 1909, Edinburgh, 1910, 1–84

[7] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp.; E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer Verlag, New York, 1987 ; 1993 480 pp. | MR | Zbl

[8] B.V. Numerov, “Novyi metod opredeleniia orbit i vychisleniia efemerid s uchetom vozmushchenii”, Tr. AO Petrogr. un-ta, 4 (1923), 29–39

[9] B.V. Noumerov, “A Method of Extrapolation of Perturbations”, Monthly Notices Royal Astronomical Society, 84 (1924), 592–601 | DOI

[10] B.V. Rogov, M.N. Mikhailovskaya, “Monotonic Bicompact Schemes for Linear Transport Equations”, Math. Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl

[11] V.A. Gordin, Matematicheskie zadachi gidrodinamicheskogo prognoza pogody. Vychislitelnye aspekty, Gidrometeoizdat, L., 1987, 264 pp.

[12] V.A. Gordin, E.A. Tsymbalov, “Compact Difference Schemes for Rod Lateral Vibrations quation. Numerical Algebra with Applications”, Proceedings of Fourth China-Russia Confrerence, Rostov-on-Don; Southern Federal University Publishing, 2015, 110–113 | MR

[13] V.A. Gordin, A.A. Shemendyuk, ““Transparent” Boundary Conditions for the Rod Transverse Vibrations Equation”, Applied Mathematical Modelling (to appear)

[14] S. Britt, S. Tsynkov, E. Turkel, “Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes”, Communications in Computational Physics, 9:3 (2011), 520–541 | DOI | MR | Zbl

[15] V.A. Gordin, E.A. Tsymbalov, “Compact difference schemes for the diffusion and Schrodinger equations. Approximation, stability, convergence, effectiveness, monotony”, Journal of Computational Mathematics, 32:3 (2014), 348–370 | DOI | MR | Zbl

[16] V.A. Gordin, E.A. Tsymbalov, “Compact difference scheme for parabolic and Schrodingertype equations with variable coefficients”, J. Comp. Phys., 375 (2018), 1451–1468 | DOI | MR

[17] V.A. Gordin, E.A. Tsymbalov, Compact difference schemes for weakly-nonlinear parabolic and Schrodinger-type equations and systems, 2017, arXiv: 1712.05185 | MR

[18] Shuwei Xu, Lihong Wang, R. Erdelyi, Jingsong He, “Degeneracy in bright-dark solitons of the Derivative Nonlinear Schrodinger equation”, Applied Mathematics Letters, 87 (2018), 64–72 | MR

[19] V.A. Gordin, E.A. Tsymbalov, “A Fourth-Order Accurate Difference Scheme for a Differential Equation with Variable Coefficients”, Mathematical Models and Computer Simulations, 10:1 (2018), 79–88 | DOI | MR

[20] V.A. Gordin, E.A. Tsymbalov, “Kompaktnaia raznostnaia skhema dlia differentsialnogo uravneniia s kusochno-postoiannym koeffitsientom”, Matematicheskoe modelirovanie, 29:12 (2017), 16–28