Compact finite-difference scheme for differential relations' approximation
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 58-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential relations include both differential operators and solvers of boundary value problems. The formulas of compact finite-difference approximations for differential relations of the first and second orders are obtained. Three-point stencils are used. Like classical finite difference schemes, the tridiagonal matrix is inverted to implement the scheme. However, compact schemes provide significantly higher accuracy and order of the 4th approximation instead of the 2nd.
Keywords: compact finite-difference scheme, approximation order, operator's symbol, stencil.
@article{MM_2019_31_7_a3,
     author = {V. A. Gordin},
     title = {Compact finite-difference scheme for differential relations' approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/}
}
TY  - JOUR
AU  - V. A. Gordin
TI  - Compact finite-difference scheme for differential relations' approximation
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 58
EP  - 74
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/
LA  - ru
ID  - MM_2019_31_7_a3
ER  - 
%0 Journal Article
%A V. A. Gordin
%T Compact finite-difference scheme for differential relations' approximation
%J Matematičeskoe modelirovanie
%D 2019
%P 58-74
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/
%G ru
%F MM_2019_31_7_a3
V. A. Gordin. Compact finite-difference scheme for differential relations' approximation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 58-74. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/