Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_7_a3, author = {V. A. Gordin}, title = {Compact finite-difference scheme for differential relations' approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {58--74}, publisher = {mathdoc}, volume = {31}, number = {7}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/} }
V. A. Gordin. Compact finite-difference scheme for differential relations' approximation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 58-74. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a3/
[1] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, Journal of Computational Physics, 103:1 (1992), 16-42 | DOI | MR | Zbl
[2] V.A. Gordin, Kak eto poschitat?, MTsNMO, M., 2005, 280 pp.; 2013, 733 pp.
[3] V.A. Gordin, Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.
[4] V.A. Gordin, Differentsialnye i raznostnye uravneniia. Kakie iavleniia oni opisyvaiut i kak ikh reshat, Izdatelskii dom VShE, M., 2016, 530 pp.
[5] V.A. Gordin, “About inertia of measurement devices”, Research Activities in Atmospheric and Oceanic Modeling, 2018, 1.15–1.16
[6] P.H. Cowell, A.C.D. Crommelin, “Investigation of the motion of Halley's comet from 1759 to 1910”, Appendix to Greenwich Observations for 1909, Edinburgh, 1910, 1–84
[7] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp.; E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer Verlag, New York, 1987 ; 1993 480 pp. | MR | Zbl
[8] B.V. Numerov, “Novyi metod opredeleniia orbit i vychisleniia efemerid s uchetom vozmushchenii”, Tr. AO Petrogr. un-ta, 4 (1923), 29–39
[9] B.V. Noumerov, “A Method of Extrapolation of Perturbations”, Monthly Notices Royal Astronomical Society, 84 (1924), 592–601 | DOI
[10] B.V. Rogov, M.N. Mikhailovskaya, “Monotonic Bicompact Schemes for Linear Transport Equations”, Math. Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[11] V.A. Gordin, Matematicheskie zadachi gidrodinamicheskogo prognoza pogody. Vychislitelnye aspekty, Gidrometeoizdat, L., 1987, 264 pp.
[12] V.A. Gordin, E.A. Tsymbalov, “Compact Difference Schemes for Rod Lateral Vibrations quation. Numerical Algebra with Applications”, Proceedings of Fourth China-Russia Confrerence, Rostov-on-Don; Southern Federal University Publishing, 2015, 110–113 | MR
[13] V.A. Gordin, A.A. Shemendyuk, ““Transparent” Boundary Conditions for the Rod Transverse Vibrations Equation”, Applied Mathematical Modelling (to appear)
[14] S. Britt, S. Tsynkov, E. Turkel, “Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes”, Communications in Computational Physics, 9:3 (2011), 520–541 | DOI | MR | Zbl
[15] V.A. Gordin, E.A. Tsymbalov, “Compact difference schemes for the diffusion and Schrodinger equations. Approximation, stability, convergence, effectiveness, monotony”, Journal of Computational Mathematics, 32:3 (2014), 348–370 | DOI | MR | Zbl
[16] V.A. Gordin, E.A. Tsymbalov, “Compact difference scheme for parabolic and Schrodingertype equations with variable coefficients”, J. Comp. Phys., 375 (2018), 1451–1468 | DOI | MR
[17] V.A. Gordin, E.A. Tsymbalov, Compact difference schemes for weakly-nonlinear parabolic and Schrodinger-type equations and systems, 2017, arXiv: 1712.05185 | MR
[18] Shuwei Xu, Lihong Wang, R. Erdelyi, Jingsong He, “Degeneracy in bright-dark solitons of the Derivative Nonlinear Schrodinger equation”, Applied Mathematics Letters, 87 (2018), 64–72 | MR
[19] V.A. Gordin, E.A. Tsymbalov, “A Fourth-Order Accurate Difference Scheme for a Differential Equation with Variable Coefficients”, Mathematical Models and Computer Simulations, 10:1 (2018), 79–88 | DOI | MR
[20] V.A. Gordin, E.A. Tsymbalov, “Kompaktnaia raznostnaia skhema dlia differentsialnogo uravneniia s kusochno-postoiannym koeffitsientom”, Matematicheskoe modelirovanie, 29:12 (2017), 16–28