Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_7_a1, author = {V. A. Balashov and E. B. Savenkov and B. N. Chetverushkin}, title = {DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--44}, publisher = {mathdoc}, volume = {31}, number = {7}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/} }
TY - JOUR AU - V. A. Balashov AU - E. B. Savenkov AU - B. N. Chetverushkin TI - DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples JO - Matematičeskoe modelirovanie PY - 2019 SP - 21 EP - 44 VL - 31 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/ LA - ru ID - MM_2019_31_7_a1 ER -
%0 Journal Article %A V. A. Balashov %A E. B. Savenkov %A B. N. Chetverushkin %T DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples %J Matematičeskoe modelirovanie %D 2019 %P 21-44 %V 31 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/ %G ru %F MM_2019_31_7_a1
V. A. Balashov; E. B. Savenkov; B. N. Chetverushkin. DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 21-44. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/
[1] M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland, “Pore-scale imaging and modelling”, Advances in Water Resources, 51 (2013), 197–216 | DOI
[2] M.J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, Cambridge, 2017, 482 pp.
[3] C.F. Berg, O. Lopez, H. Berland, “Industrial applications of digital rock technology”, Journal of Petroleum Science and Engineering, 157 (2017), 131–147 | DOI
[4] A. Raoof, H.M. Nick, S.M. Hassanizadeh, C.J. Spiers, “PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media”, Computers Geosciences, 61 (2013), 160–174 | DOI
[5] L. Algive, S. Bekri, O. Vizika, “Pore-Network Modeling Dedicated to the Determination of the Petrophysical-Property Changes in the Presence of Reactive Fluid”, SPE Journal, 15:3 (2010), 618–633 | DOI
[6] M.J. Blunt, “Flow in porous media and pore-network models and multiphase flow”, Current Opinion in Colloid Interface Science, 6:3 (2001), 197–207 | DOI
[7] F.O. Alpak, F. Gray, N. Saxena, J. Dietderich, R. Hofmann, S. Berg, “A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images”, Computational Geosciences, 22:3 (2018), 815–832 | DOI | MR | Zbl
[8] Q. Kang, P.C. Lichtner, D.R. Janecky, “Lattice Boltzmann Method for Reacting Flows in Porous Media”, Advances in Applied Mathematics and Mechanics, 2:5 (2010), 545–563 | DOI | MR
[9] X. He, L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physical Review E, 56:6 (1997), 6811–6817 | DOI | MR
[10] W. Yong, W. Zhao, L. Luo, “Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration”, Physical Review E, 93:3 (2016), 033310 | DOI | MR
[11] S. Chen, G.D. Doolen, “Lattice Boltzmann Method for Fluid Flows”, Annual Review of Fluid Mechanics, 30 (1998), 329–364 | DOI | MR | Zbl
[12] H.W. Zheng, C. Shu, Y.T. Chew, “A lattice Boltzmann model for multiphase flows with large density ratio”, Journal of Computational Physics, 218:1 (2006), 353–371 | DOI | MR | Zbl
[13] E. Aurell, M. Do-Quang, An inventory of Lattice Boltzmann models of multiphase flows, arXiv: cond-mat/0105372v1 [cond-mat.soft]
[14] S. Succi, The Lattice Bolzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001, 304 pp. | MR
[15] M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 2nd. corrected printing, Springer-Verlag, Berlin–Heidelberg, 2006, 172
[16] X. Shan, G. Doolen, “Multicomponent Lattice-Boltzmann Model with Interparticle Interaction”, Journal of Statistical Physics, 81:1–2 (1995), 379–393 | DOI | Zbl
[17] D.M. Anderson, G.B. McFadden, A Diffuse-Inreface Description of Fluid Systems, Gaithersburg: National Institute of Satndards and Technology, Gaithersburg, 1996, 35
[18] D.M. Anderson, G.B. McFadden, A.A. Wheeler, “Diffuse-interface methods in fluid mechanics”, Annual Review of Fluid Mechanics, 30 (1998), 139–165 | DOI | MR | Zbl
[19] K. Kim, “Phase-Field Models for Multi-Component Fluid Flows”, Communications in Computational Physics, 12:3 (2012), 613–661 | DOI | MR | Zbl
[20] R. Mauri, Multiphase microfluidics: The Diffuse Interface Model, CISM Courses and Lectures, 538, Springer-Verlag, Wien, 2012, 176 | MR
[21] S. Groß, Numerical methods for three-dimensional incompressible two-phase flow problems, Dissertation, RWTH Aachen, 2008
[22] S. Gross, A. Reusken, Numerical Methods for Two-phase Incompressible Flows, Springer-Verlag, Berlin–Heidelberg, 2011, 482 | MR
[23] A. Smolianski, Numerical Modeling of Two-Fluid Interfacial Flows, Dissertation, University of Jyvaskyla, 2001
[24] C. Gunde, B. Bera, S.K. Mitra, “Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations”, Energy, 35:12 (2010), 5209–5216 | DOI
[25] Q. Zhu, Q. Zhou, X. Li, “Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media”, Journal of Rock Mechanics and Geotechnical Engineering, 8:1 (2016), 87–92 | DOI
[26] A.Q. Raeini, M.J. Blunt, B. Bijeljic, “Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method”, Journal of Computational Physics, 231:17 (2012), 5653–5668 | DOI | MR
[27] J. Maes, C. Soulaine, “A new compressive scheme to simulate species transfer across fluid interfaces using the Volume-Of-Fluid method”, Chemical Engineering Science, 190 (2018), 405–418 | DOI
[28] M. Shams, A.Q. Raeini, M.J. Blunt, B. Bijeljic, “A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method”, J. of Comp. Phys., 357 (2018), 159–182 | DOI | MR | Zbl
[29] O.Yu. Dinariev, N.V. Evseev, A.Yu. Demianov, Introduction to the Density Functional Method in Hydrodynamics, Fizmatlit, M., 2009, 312 pp.
[30] R.T. Armstrong, S. Berg, O. Dinariev, N. Evseev, D. Klemin, D. Koroteev, S. Safonov, “Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics”, Transport in Porous Media, 112:3 (2016), 577–607 | DOI | MR
[31] (data obrascheniya: 26.09.2018) http://www.slb.com/services/characterization/reservoir/core_pvt_lab/coreflow.aspx
[32] Yu.V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.
[33] B.N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.
[34] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl
[35] V.A. Balashov, E.B. Savenkov, “Quasi-Hydrodynamic Model of Multiphase Fluid Flows Taking into Account Phase Interaction”, Journal of Applied Mechanics and Technical Physics, 59:3 (2018), 434–444 | DOI | MR | Zbl
[36] V.A. Balashov, E.B. Savenkov, “Kvazigidrodinamicheskaya sistema uravnenij dlya opisaniya techenij mnogofaznoj zhidkosti s uchetom poverhnostnyh effektov”, Preprinty IPM im. M.V. Keldysha, 2015, 075, 37 pp. | Zbl
[37] J. Dvorkin, N. Derzhi, E. Diaz, Q. Fang, “Relevance of computational rock physics”, Geophysics, 76:5 (2011), E141–E153 | DOI
[38] , Imperial College London (data obrascheniya: 26.09.2018) http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
[39] R. Ierusalimschy, L. Henrique de Figueiredo, W.C. Filho, “Lua — an extensible extension language”, Software-Practice Experience, 26:6 (1996), 635–652 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[40] R. Ierusalimschy, Programming in Lua, Lua.Org, 2016, 388 pp.
[41] R.L. Graham, T.S. Woodall, J.M. Squyres, “Open MPI: A Flexible High Performance MPI”, Proceedings, 6th Annual International Conference on Parallel Processing and Applied Mathematics (Poznan, Poland, September 2005) | MR
[42] V.A. Balashov, E.B. Savenkov, “Primenenie kvazigidrodinamicheskoj sistemy uravnenij dlya pryamogo modelirovaniya techenij v mikroobrazcah gornyh porod”, Preprinty IPM im. M.V. Keldysha, 2015, 084, 20 pp.
[43] V.A. Balashov, E.B. Savenkov, “Direct pore-scale ow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI | DOI
[44] V.A. Balashov, V.E. Borisov, “Algoritm rascheta trekhmernyh techenij umerenno-razrezhennogo gaza v oblastyah s voksel'noj geometriej”, Preprinty IPM im. M.V.Keldysha, 2017, 099, 24 pp. | Zbl
[45] V.A. Balashov, “Pryamoe modelirovanie mikrotechenij umerenno-razrezhennogo gaza v obrazcah gornyh porod”, Matem. Modelirovanie, 30:9 (2018), 3–20 | DOI
[46] V. Balashov, A. Zlotnik, E. Savenkov, “Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics”, Russian Journal of Numerical Analysis and Mathematical Modelling, 34:1 (2019), 1–13 | DOI | MR | Zbl
[47] V.A. Balashov, E.B. Savenkov, “Chislennyj raschet dvumernyh techenij dvuhfaznoj zhidkosti s uchetom smachivaemosti s pomoshch'yu kvazigidrodinamicheskih uravnenij”, Preprinty IPM im. M.V. Keldysha, 2018, 131, 18 pp.
[48] V. Balashov, A. Zlotnik, E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface”, Russ. J. Numer. Anal. Math. Model, 32:6 (2017), 347–358 | DOI | MR | Zbl
[49] V.A. Balashov, A.A. Zlotnik, E.B. Savenkov, “Chislennyj algoritm dlya rascheta trekhmernyh dvuhfaznyh techenij s poverhnostnymi ehffektami v oblastyah s voksel'noj geometriej”, Preprinty IPM im. M.V. Keldysha, 2017, 091, 28 pp. | Zbl
[50] J.W. Cahn, J.E. Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI
[51] A. Novick-Cohen, L.A. Segel, “Nonlinear aspects of the Cahn-Hilliard equation”, Physica D: Nonlinear Phenomena, 10:3 (1984), 277–298 | DOI | MR
[52] O. Wodo, B. Ganapathysubramanian, “Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem”, Journal of Computational Physics, 230:15 (2011), 6037–6060 | DOI | MR | Zbl
[53] M.I.M. Copetti, C.M. Elliott, “Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy”, Numerische Mathematik, 63:1 (1992), 39–65 | DOI | MR | Zbl
[54] G. Tierra, F. Guillen-Gonzalez, “Numerical Methods for Solving the Cahn-Hilliard Equation and Its Applicability to Related Energy-Based Models”, Archives of Computational Methods in Engineering, 22:2 (2015), 269–289 | DOI | MR | Zbl
[55] J. Liu, Thermodynamically consistent modeling and simulation of multiphase flows, PhD dissertation, The university of Texas, Austin, 2014
[56] A. Carlson, M. Do-Quang, G. Amberg, “Modelling of dynamic wetting far from equillibrium”, Physics of fluids, 21:12 (2009), 121701 | DOI | Zbl
[57] G. Karypis, V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM Journal on Scientific Computing, 20:1 (1998), 359–392 | DOI | MR
[58] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th ed., Kitware, 2006
[59] H. Dong, M.J. Blunt, “Pore-network extraction from micro-computerized-tomography images”, Phys. Rev. E, 80 (2009), 036307 | DOI
[60] W. Degruyter, A. Burgisser, O. Bachmann, O. Malaspinas, “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices”, Geosphere, 6:5 (2010), 470–481 | DOI
[61] Palabos: Parallel lattice Boltzmann solver, http://www.palabos.org/
[62] J.G. Heid, J.J. McMahon, R.F. Nielsen, S.T. Yuster, “Study of the Permeability of Rocks to Homogeneous Fluids”, Drilling and Production Practice, American Petroleum Institute, 1950, 230–244
[63] W. Tanikawa, T. Shimamoto, “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics and Mining Sciences, 46:2 (2009), 229–238 | DOI
[64] F.O. Jones, W.W. Owens, “A Laboratory Study of Low-Permeability Gas Sands”, Journal of Petroleum Technology, 32:9 (1980) | DOI