DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 21-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the description of the software package DiMP-Hydro, being developed in Keldysh Institute of Applied Mathematics (Russian Academy of Sciences). It is intended to simulate microflows of single- and two-phase viscous compressible fluids with different rheology in spatial voxel domains. Such geometric models are relevant due to development and widespread usage of computer microtomography methods. One of the main areas of application of this software package is the simulation of microflows within pore spaces of core (rock) samples. Simulation results can be used to determine macroscopic properties of core samples (for instance, absolute permeability) and features of displacement processes at the micro level, which is one of main tasks of the “digital rock” technology. The description of the used mathematical models, numerical algorithms and the software package is given. To describe the fluid dynamics, the regularized Navier–Stokes (for single-phase flows) and Navier–Stokes–Cahn–Hillard equations (for two-phase flows) are used. The regularization is based on the quasihydrodynamic approach, which is physically justified and makes it possible to use explicit stable numerical algorithms that are relatively simple to implement. The software package is parallel and focused on the use of high-performance computing systems. The results of the use of DiMP-Hydro for simulation of microflows of fluid (including twophase) and gas (including moderately rarefied) in the pore space of core samples are presented.
Keywords: microflows, software package, digital rock physics, quasi-hydrodynamic regularization, Navier–Stokes–Cahn–Hillard equations.
@article{MM_2019_31_7_a1,
     author = {V. A. Balashov and E. B. Savenkov and B. N. Chetverushkin},
     title = {DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--44},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/}
}
TY  - JOUR
AU  - V. A. Balashov
AU  - E. B. Savenkov
AU  - B. N. Chetverushkin
TI  - DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 21
EP  - 44
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/
LA  - ru
ID  - MM_2019_31_7_a1
ER  - 
%0 Journal Article
%A V. A. Balashov
%A E. B. Savenkov
%A B. N. Chetverushkin
%T DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples
%J Matematičeskoe modelirovanie
%D 2019
%P 21-44
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/
%G ru
%F MM_2019_31_7_a1
V. A. Balashov; E. B. Savenkov; B. N. Chetverushkin. DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 21-44. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a1/

[1] M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland, “Pore-scale imaging and modelling”, Advances in Water Resources, 51 (2013), 197–216 | DOI

[2] M.J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, Cambridge, 2017, 482 pp.

[3] C.F. Berg, O. Lopez, H. Berland, “Industrial applications of digital rock technology”, Journal of Petroleum Science and Engineering, 157 (2017), 131–147 | DOI

[4] A. Raoof, H.M. Nick, S.M. Hassanizadeh, C.J. Spiers, “PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media”, Computers Geosciences, 61 (2013), 160–174 | DOI

[5] L. Algive, S. Bekri, O. Vizika, “Pore-Network Modeling Dedicated to the Determination of the Petrophysical-Property Changes in the Presence of Reactive Fluid”, SPE Journal, 15:3 (2010), 618–633 | DOI

[6] M.J. Blunt, “Flow in porous media and pore-network models and multiphase flow”, Current Opinion in Colloid Interface Science, 6:3 (2001), 197–207 | DOI

[7] F.O. Alpak, F. Gray, N. Saxena, J. Dietderich, R. Hofmann, S. Berg, “A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images”, Computational Geosciences, 22:3 (2018), 815–832 | DOI | MR | Zbl

[8] Q. Kang, P.C. Lichtner, D.R. Janecky, “Lattice Boltzmann Method for Reacting Flows in Porous Media”, Advances in Applied Mathematics and Mechanics, 2:5 (2010), 545–563 | DOI | MR

[9] X. He, L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physical Review E, 56:6 (1997), 6811–6817 | DOI | MR

[10] W. Yong, W. Zhao, L. Luo, “Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration”, Physical Review E, 93:3 (2016), 033310 | DOI | MR

[11] S. Chen, G.D. Doolen, “Lattice Boltzmann Method for Fluid Flows”, Annual Review of Fluid Mechanics, 30 (1998), 329–364 | DOI | MR | Zbl

[12] H.W. Zheng, C. Shu, Y.T. Chew, “A lattice Boltzmann model for multiphase flows with large density ratio”, Journal of Computational Physics, 218:1 (2006), 353–371 | DOI | MR | Zbl

[13] E. Aurell, M. Do-Quang, An inventory of Lattice Boltzmann models of multiphase flows, arXiv: cond-mat/0105372v1 [cond-mat.soft]

[14] S. Succi, The Lattice Bolzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001, 304 pp. | MR

[15] M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 2nd. corrected printing, Springer-Verlag, Berlin–Heidelberg, 2006, 172

[16] X. Shan, G. Doolen, “Multicomponent Lattice-Boltzmann Model with Interparticle Interaction”, Journal of Statistical Physics, 81:1–2 (1995), 379–393 | DOI | Zbl

[17] D.M. Anderson, G.B. McFadden, A Diffuse-Inreface Description of Fluid Systems, Gaithersburg: National Institute of Satndards and Technology, Gaithersburg, 1996, 35

[18] D.M. Anderson, G.B. McFadden, A.A. Wheeler, “Diffuse-interface methods in fluid mechanics”, Annual Review of Fluid Mechanics, 30 (1998), 139–165 | DOI | MR | Zbl

[19] K. Kim, “Phase-Field Models for Multi-Component Fluid Flows”, Communications in Computational Physics, 12:3 (2012), 613–661 | DOI | MR | Zbl

[20] R. Mauri, Multiphase microfluidics: The Diffuse Interface Model, CISM Courses and Lectures, 538, Springer-Verlag, Wien, 2012, 176 | MR

[21] S. Groß, Numerical methods for three-dimensional incompressible two-phase flow problems, Dissertation, RWTH Aachen, 2008

[22] S. Gross, A. Reusken, Numerical Methods for Two-phase Incompressible Flows, Springer-Verlag, Berlin–Heidelberg, 2011, 482 | MR

[23] A. Smolianski, Numerical Modeling of Two-Fluid Interfacial Flows, Dissertation, University of Jyvaskyla, 2001

[24] C. Gunde, B. Bera, S.K. Mitra, “Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations”, Energy, 35:12 (2010), 5209–5216 | DOI

[25] Q. Zhu, Q. Zhou, X. Li, “Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media”, Journal of Rock Mechanics and Geotechnical Engineering, 8:1 (2016), 87–92 | DOI

[26] A.Q. Raeini, M.J. Blunt, B. Bijeljic, “Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method”, Journal of Computational Physics, 231:17 (2012), 5653–5668 | DOI | MR

[27] J. Maes, C. Soulaine, “A new compressive scheme to simulate species transfer across fluid interfaces using the Volume-Of-Fluid method”, Chemical Engineering Science, 190 (2018), 405–418 | DOI

[28] M. Shams, A.Q. Raeini, M.J. Blunt, B. Bijeljic, “A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method”, J. of Comp. Phys., 357 (2018), 159–182 | DOI | MR | Zbl

[29] O.Yu. Dinariev, N.V. Evseev, A.Yu. Demianov, Introduction to the Density Functional Method in Hydrodynamics, Fizmatlit, M., 2009, 312 pp.

[30] R.T. Armstrong, S. Berg, O. Dinariev, N. Evseev, D. Klemin, D. Koroteev, S. Safonov, “Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics”, Transport in Porous Media, 112:3 (2016), 577–607 | DOI | MR

[31] (data obrascheniya: 26.09.2018) http://www.slb.com/services/characterization/reservoir/core_pvt_lab/coreflow.aspx

[32] Yu.V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.

[33] B.N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[34] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl

[35] V.A. Balashov, E.B. Savenkov, “Quasi-Hydrodynamic Model of Multiphase Fluid Flows Taking into Account Phase Interaction”, Journal of Applied Mechanics and Technical Physics, 59:3 (2018), 434–444 | DOI | MR | Zbl

[36] V.A. Balashov, E.B. Savenkov, “Kvazigidrodinamicheskaya sistema uravnenij dlya opisaniya techenij mnogofaznoj zhidkosti s uchetom poverhnostnyh effektov”, Preprinty IPM im. M.V. Keldysha, 2015, 075, 37 pp. | Zbl

[37] J. Dvorkin, N. Derzhi, E. Diaz, Q. Fang, “Relevance of computational rock physics”, Geophysics, 76:5 (2011), E141–E153 | DOI

[38] , Imperial College London (data obrascheniya: 26.09.2018) http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/

[39] R. Ierusalimschy, L. Henrique de Figueiredo, W.C. Filho, “Lua — an extensible extension language”, Software-Practice Experience, 26:6 (1996), 635–652 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[40] R. Ierusalimschy, Programming in Lua, Lua.Org, 2016, 388 pp.

[41] R.L. Graham, T.S. Woodall, J.M. Squyres, “Open MPI: A Flexible High Performance MPI”, Proceedings, 6th Annual International Conference on Parallel Processing and Applied Mathematics (Poznan, Poland, September 2005) | MR

[42] V.A. Balashov, E.B. Savenkov, “Primenenie kvazigidrodinamicheskoj sistemy uravnenij dlya pryamogo modelirovaniya techenij v mikroobrazcah gornyh porod”, Preprinty IPM im. M.V. Keldysha, 2015, 084, 20 pp.

[43] V.A. Balashov, E.B. Savenkov, “Direct pore-scale ow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI | DOI

[44] V.A. Balashov, V.E. Borisov, “Algoritm rascheta trekhmernyh techenij umerenno-razrezhennogo gaza v oblastyah s voksel'noj geometriej”, Preprinty IPM im. M.V.Keldysha, 2017, 099, 24 pp. | Zbl

[45] V.A. Balashov, “Pryamoe modelirovanie mikrotechenij umerenno-razrezhennogo gaza v obrazcah gornyh porod”, Matem. Modelirovanie, 30:9 (2018), 3–20 | DOI

[46] V. Balashov, A. Zlotnik, E. Savenkov, “Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics”, Russian Journal of Numerical Analysis and Mathematical Modelling, 34:1 (2019), 1–13 | DOI | MR | Zbl

[47] V.A. Balashov, E.B. Savenkov, “Chislennyj raschet dvumernyh techenij dvuhfaznoj zhidkosti s uchetom smachivaemosti s pomoshch'yu kvazigidrodinamicheskih uravnenij”, Preprinty IPM im. M.V. Keldysha, 2018, 131, 18 pp.

[48] V. Balashov, A. Zlotnik, E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface”, Russ. J. Numer. Anal. Math. Model, 32:6 (2017), 347–358 | DOI | MR | Zbl

[49] V.A. Balashov, A.A. Zlotnik, E.B. Savenkov, “Chislennyj algoritm dlya rascheta trekhmernyh dvuhfaznyh techenij s poverhnostnymi ehffektami v oblastyah s voksel'noj geometriej”, Preprinty IPM im. M.V. Keldysha, 2017, 091, 28 pp. | Zbl

[50] J.W. Cahn, J.E. Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI

[51] A. Novick-Cohen, L.A. Segel, “Nonlinear aspects of the Cahn-Hilliard equation”, Physica D: Nonlinear Phenomena, 10:3 (1984), 277–298 | DOI | MR

[52] O. Wodo, B. Ganapathysubramanian, “Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem”, Journal of Computational Physics, 230:15 (2011), 6037–6060 | DOI | MR | Zbl

[53] M.I.M. Copetti, C.M. Elliott, “Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy”, Numerische Mathematik, 63:1 (1992), 39–65 | DOI | MR | Zbl

[54] G. Tierra, F. Guillen-Gonzalez, “Numerical Methods for Solving the Cahn-Hilliard Equation and Its Applicability to Related Energy-Based Models”, Archives of Computational Methods in Engineering, 22:2 (2015), 269–289 | DOI | MR | Zbl

[55] J. Liu, Thermodynamically consistent modeling and simulation of multiphase flows, PhD dissertation, The university of Texas, Austin, 2014

[56] A. Carlson, M. Do-Quang, G. Amberg, “Modelling of dynamic wetting far from equillibrium”, Physics of fluids, 21:12 (2009), 121701 | DOI | Zbl

[57] G. Karypis, V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM Journal on Scientific Computing, 20:1 (1998), 359–392 | DOI | MR

[58] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th ed., Kitware, 2006

[59] H. Dong, M.J. Blunt, “Pore-network extraction from micro-computerized-tomography images”, Phys. Rev. E, 80 (2009), 036307 | DOI

[60] W. Degruyter, A. Burgisser, O. Bachmann, O. Malaspinas, “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices”, Geosphere, 6:5 (2010), 470–481 | DOI

[61] Palabos: Parallel lattice Boltzmann solver, http://www.palabos.org/

[62] J.G. Heid, J.J. McMahon, R.F. Nielsen, S.T. Yuster, “Study of the Permeability of Rocks to Homogeneous Fluids”, Drilling and Production Practice, American Petroleum Institute, 1950, 230–244

[63] W. Tanikawa, T. Shimamoto, “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics and Mining Sciences, 46:2 (2009), 229–238 | DOI

[64] F.O. Jones, W.W. Owens, “A Laboratory Study of Low-Permeability Gas Sands”, Journal of Petroleum Technology, 32:9 (1980) | DOI