Difference schemes of consistent approximation to stress-strain state and energy balance of medium
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the support operator technique for two-dimensional problems of elasticity theory we constructed integrally consistent approximations to the components of the strain tensor and the elastic energy of the medium for the equations of the elasticity theory in terms of displacements. Approximations are constructed for the case of irregular difference grids, in the R-Z plane of a cylindrical coordinate system. We use the limiting process assuming that the azimuthal angle tends to zero for passing from the full threedimensional approximations to the two-dimensional approximations in the R-Z plane. The used technique preserves the divergent form, self-adjointness and sign-definiteness of the two-dimensional approximations. These properties are inherent in their 3D predecessors corresponding to the operators in the governing differential equations.
Keywords: difference schemes, method of support operators, theory of elasticity, cylindrical geometry.
@article{MM_2019_31_7_a0,
     author = {Yu. A. Poveshchenko and V. A. Gasilov and V. O. Podryga and M. E. Ladonkina and A. S. Voloshin and D. S. Boykov and K. A. Beklemysheva},
     title = {Difference schemes of consistent approximation to stress-strain state and energy balance of medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a0/}
}
TY  - JOUR
AU  - Yu. A. Poveshchenko
AU  - V. A. Gasilov
AU  - V. O. Podryga
AU  - M. E. Ladonkina
AU  - A. S. Voloshin
AU  - D. S. Boykov
AU  - K. A. Beklemysheva
TI  - Difference schemes of consistent approximation to stress-strain state and energy balance of medium
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 20
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a0/
LA  - ru
ID  - MM_2019_31_7_a0
ER  - 
%0 Journal Article
%A Yu. A. Poveshchenko
%A V. A. Gasilov
%A V. O. Podryga
%A M. E. Ladonkina
%A A. S. Voloshin
%A D. S. Boykov
%A K. A. Beklemysheva
%T Difference schemes of consistent approximation to stress-strain state and energy balance of medium
%J Matematičeskoe modelirovanie
%D 2019
%P 3-20
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a0/
%G ru
%F MM_2019_31_7_a0
Yu. A. Poveshchenko; V. A. Gasilov; V. O. Podryga; M. E. Ladonkina; A. S. Voloshin; D. S. Boykov; K. A. Beklemysheva. Difference schemes of consistent approximation to stress-strain state and energy balance of medium. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a0/

[1] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, v. 2, Solid and Structural Mechanics, Butterworth Heinemann, London, 2000, 689 pp. | MR | Zbl

[2] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, 2005, 733 pp. | MR

[3] V.D. Ivanov, R.A. Pashutin, I.B. Petrov, A.G. Tormasov, A.S. Kholodov, “Setochno-kharakteristicheskie metody rascheta protsessov dinamicheskogo deformirovaniia na nereguliarnykh raschetnykh setkakh”, Matem. Modelirovanie, 11:7 (1999), 118–127

[4] I.E. Kvasov, I.B. Petrov, F.B. Chelnokov, “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiiakh”, Matem. modelirovanie, 21:5 (2009), 3–9 | Zbl

[5] A.A. Samarskii, A.V. Koldoba, Yu.A. Poveshchenko, V.F. Tishkin, A.P. Favorskii, Raznostnye skhemy na nereguliarnykh setkakh, Minsk: ZAO «Kriterii», Minsk, 1996

[6] A.A. Samarskii, V.F. Tishkin, A.P. Favorskii, A.Yu. Shashkov, “Ispolzovanie metoda opornykh operatorov dlia postroeniia raznostnykh analogov operatsii tenzornogo analiza”, Differents. uravneniia, 18:7 (1982), 1251–1256 | MR

[7] A.V. Koldoba, Yu.A. Poveshchenko, I.V. Gasilova, E.Yu. Dorofeeva, “Raznostnye skhemy metoda opornykh operatorov dlia uravnenii teorii uprugosti”, Matem. modelirovanie, 24:12 (2012), 86–96 | MR | Zbl

[8] V.A. Gasilov, A.Yu. Krukovskii, Yu.A. Poveshchenko, I.P. Tsygvintsev, “Odnorodnye raznostnye skhemy dlia resheniia sopriazhennykh zadach gidrodinamiki i uprugosti”, Keldysh Institute preprints, 2018, 13, 17 pp.

[9] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 7, Theory of Elasticity, Pergamon Press, Oxford, 1970, 165 pp. | MR

[10] A.J. McConnell, Applications of tensor analysis, Dover publ., New York, 1957, 354 pp. | MR

[11] G. Korn, T. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1961, 943 pp. | MR | Zbl

[12] S.S. Sokolov et al., “Metodika TIM-2D dlia rascheta zadach mekhaniki sploshnoi sredy na nereguliarnykh mnogougolnykh setkakh s proizvolnym kolichestvom sviazei v uzlakh”, Voprosy atomnoi nauki i tekhniki. Seriia: Matematicheskoe modelirovanie fizicheskikh protsessov, 2006, no. 4, 29–44

[13] A.B. Novikov, S.A. Glushak, “Soprotivlenie metallov plasticheskoi deformatsii pri vysokoskorostnom szhatii”, Khim. Fizika, 19 (2000), 65–69

[14] G.E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill, New York, 1970, 230 pp.