Numerical implementation of the model of femtosecond laser pulse impact on the glass in the nonlinear Maxwell equations approach
Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 107-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

An implicit finite-difference scheme for the solution of the problem of interaction of femtosecond laser pulse with glasses is presented. The used model based on the nonlinear Maxwell equations supplemented by hydrodynamic equations for the free electron plasma. All main physical processes are taken into account. The axial symmetric geometry is used. The construction of the scheme takes the features of the problem into account. This makes the scheme very efficient. As an example of the application of the scheme the results of the modeling of interaction of the laser pulses of usual Gaussian shape with linear polarization and doughnut shape pulses with radial and azimuthally polarizations with glasses are presented. The significant differences in the interaction of this 3 type of the pulses with glasses are shown.
Keywords: nonlinear Maxwell equations, femtosecond laser pulse, plasma, finite-difference scheme, implicit algorithms, numerical aperture.
Mots-clés : Kerr effect
@article{MM_2019_31_6_a6,
     author = {V. P. Zhukov and M. P. Fedoruk},
     title = {Numerical implementation of the model of femtosecond laser pulse impact on the glass in the nonlinear {Maxwell} equations approach},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_6_a6/}
}
TY  - JOUR
AU  - V. P. Zhukov
AU  - M. P. Fedoruk
TI  - Numerical implementation of the model of femtosecond laser pulse impact on the glass in the nonlinear Maxwell equations approach
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 107
EP  - 128
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_6_a6/
LA  - ru
ID  - MM_2019_31_6_a6
ER  - 
%0 Journal Article
%A V. P. Zhukov
%A M. P. Fedoruk
%T Numerical implementation of the model of femtosecond laser pulse impact on the glass in the nonlinear Maxwell equations approach
%J Matematičeskoe modelirovanie
%D 2019
%P 107-128
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_6_a6/
%G ru
%F MM_2019_31_6_a6
V. P. Zhukov; M. P. Fedoruk. Numerical implementation of the model of femtosecond laser pulse impact on the glass in the nonlinear Maxwell equations approach. Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 107-128. http://geodesic.mathdoc.fr/item/MM_2019_31_6_a6/

[1] Castillejo M., Ossi P. M., Zhigilei L. (eds.), Laser in material science, Springer Series in Material science, Springer international publishing, Switzerland, 2014, 387 pp. | DOI

[2] Missava H., Juodkazis S. (eds.), 3D laser microfabrication. Principles and applications, Wiley-VCH Veriag GmbH Co. KGaA, Weinheim, 2006, 388 pp.

[3] R. Taylor, C. Hnatovsky, E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass”, Laser Photon. Rev., 2:1–2 (2008), 26–46 | DOI

[4] F.V. Potemkin, B.G. Bravy, Yu.I. Bezsudnova, E.I. Mareev, V.M. Starostin, V.T. Platonenko, V.M. Gordienko, “Overcritical plasma ignition and diagnostics from oncoming interaction of two color low energy tightly focused femtosecond laser pulses inside fusied silica”, Laser Phys. Lett., 13 (2016), 045402, 8 pp. | DOI

[5] I.M. Burakov, N.M. Bulgakova, R. Stoian et al., “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses”, J. Appl. Phys., 101 (2007), 043506, 7 pp. | DOI

[6] R.A. Vlasov, O.Kh. Khasanov, T.V. Smirnova, “Evolution of tubular singular pulsed beams in a nonlinear dielectric medium upon ionisation”, Quantum electronics, 35:10 (2005), 947–952 | DOI

[7] V.P. Zhukov, A.M. Rubenchik, M.P. Fedoruk, N.M. Bulgakova, “Interaction of doughnut-shaped laser pulses with glasses”, JOSA B, 34:2 (2017), 463–471 | DOI

[8] C. Mezel, L. Hallo, A. Bourgeade, D. Hebert, V.T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, G. Travaille, “Formation of nanocavities in dielectrics: A self-consistent modeling”, Phys. of Plasmas, 15 (2008), 093504, 10 pp. | DOI

[9] K.I. Popov, C. McElcheran, K. Briggs, S. Mack, L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics”, Optics Express, 19:1 (2011), 271–282 | DOI

[10] N.M. Bulgakova, V.P. Zhukov, A. Collins, D. Rostohar, T. J.-Y. Derrien, T. Mocek, How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?, Appl. Surf. Sci., 336 (2015), 364–374 | DOI

[11] N.M. Bulgakova, V.P. Zhukov, “Continuum models of ultrashort laser-matter interaction in application to wide-bandgap dielectrics”, Laser in Materials Science, Springer Series in Materials Science, 191, eds. M. Castillejo, P.M. Ossi, L.Zhigilei, Springer International publishing, Switzerland, 2014, 101–124 | DOI

[12] N.M. Bulgakova, V.P. Zhukov, Yu.P. Meshcheryakov, “Theoretical treatments of ultrashort pulse laser processing of transparent materials: Towards understanding the volume nanograting formation and “quill” writing effect”, Appl. Phys. B, 113:3 (2013), 437–449 | DOI

[13] V.E. Gruzdev, “Modeling of laser-induced ionization of solid dielectrics for ablation simulation: role of effective mass”, Proc. of SPIE, 7842, 2010, 784216, 11 pp. | DOI

[14] A.Q. Wu, I.H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation”, Phys. Rev. B, 72 (2005), 085128, 8 pp. | DOI

[15] M.P. Vinogradova, O.V. Rudenko, A.P. Suhorukov, Teoriia voln, Nauka, M., 1979, 384 pp.

[16] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comp. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[17] P.G. Petropoulos, “Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates”, SIAM J. Appl. Math., 60:3 (2000), 1037–1058 | DOI | MR | Zbl

[18] A. Deinega, I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures”, Computer Physics Communications, 182 (2011), 149–151 | DOI | Zbl

[19] K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., AP-14 (1966), 302–307 | Zbl