Analytical study of laminar boundary layer near blunted bodies
Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 82-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In high-speed flow, blunt body elements having an irregular shape due to which gas dynamic parameters undergo considerable changes are, as a rule, the most thermally loaded parts. In this connection, quick evaluation of thermal loading on blunt bodies is important. Laminar boundary layer equations given in special coordinates in the constant axisymmetric flow of a compressible perfect gas are considered. The «adhesion» condition is accepted as a boundary condition on the wall, and equality of speed and temperature to the corresponding values of the external flow is accepted on the border. In the Pohlhausen's method, concepts of displacement thickness and momentum thickness are introduced, relations between these values and the boundary layer thickness are established, and a differential equation is derived to define the boundary layer form-parameter using which other characteristics of the boundary layer are identified. The Pohlhausen's method is modified in order to simplify the calculation, excluding from it the differential equations. Similar to velocity, a special function which includes enthalpy and dimensionless «kinetic» parameter to be determined is introduced as a biquadratic polynom. Boundary conditions on the wall and on the border of the boundary layer are used to determine the polynom coefficients. The kinetic parameter is defined in a different way for bodies of various shapes. Application results of the proposed method for calculation of thermal flows which numerical analysis is also given in number of papers within full systems of Navier–Stokes and Prandtl equations. Comparison of the results shows efficiency of the proposed method.
Keywords: boundary layer, viscosity, Pohlhausen method, supersonic flow, heat transfer, sonic point.
@article{MM_2019_31_6_a4,
     author = {V. N. Bulgakov and V. P. Kotenev and Iu. S. Ozhgibisova},
     title = {Analytical study of laminar boundary layer near blunted bodies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_6_a4/}
}
TY  - JOUR
AU  - V. N. Bulgakov
AU  - V. P. Kotenev
AU  - Iu. S. Ozhgibisova
TI  - Analytical study of laminar boundary layer near blunted bodies
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 82
EP  - 94
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_6_a4/
LA  - ru
ID  - MM_2019_31_6_a4
ER  - 
%0 Journal Article
%A V. N. Bulgakov
%A V. P. Kotenev
%A Iu. S. Ozhgibisova
%T Analytical study of laminar boundary layer near blunted bodies
%J Matematičeskoe modelirovanie
%D 2019
%P 82-94
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_6_a4/
%G ru
%F MM_2019_31_6_a4
V. N. Bulgakov; V. P. Kotenev; Iu. S. Ozhgibisova. Analytical study of laminar boundary layer near blunted bodies. Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 82-94. http://geodesic.mathdoc.fr/item/MM_2019_31_6_a4/

[1] A.V. Bratchev, E.G. Vatolina, V.V. Gorskiy i dr., Matematicheskoe modelirovanie teplovykh i gazodinamicheskikh protsessov pri proektirovanii letatelnykh apparatov, ed. V.V. Gorskii, Izd-vo MGTU im. N.E. Baumana, M., 2011, 212 pp.

[2] B.A. Zemlyanskiy, V.V. Lunev, V.I. Vlasov i dr., Konvektivnyi teploobmen letatelnykh apparatov, ed. B.A. Zemlyanskii, Fizmatlit, M., 2014, 380 pp.

[3] Yu.I. Dimitrienko, V.P. Kotenev, A.A. Zakharov, Metod lentochnykh adaptivnykh setok dlia chislennogo modelirovaniia v gazovoi dinamike, Fizmatlit, M., 2011, 280 pp.

[4] S.T. Surzhikov, Radiatsionnaia gazovaia dinamika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli, IPMekh RAN, M., 2013, 706 pp.

[5] S.T. Surzhikov, Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniia zatuplennykh tel na primere analiza experimentalnykh dannykh, IPMekh RAN, M., 2011, 192 pp.

[6] Iu.D. Shevelev, Prostranstvennye zadachi vychislitelnoy aerogidrodinamiki, Nauka, M., 1986, 368 pp.

[7] G.N. Abramovich, Prikladnaia gazovaia dinamika, Nauka, M., 1969, 824 pp.

[8] V.V. Lunev, Techenie realnykh gazov s bolshimi skorostiami, Fizmatlit, M., 2007, 327 pp.

[9] P.N. Romanenko, Gidrodinamika i teplomassoobmen v pogranichnom sloe, Energiia, M., 1974, 464 pp.

[10] V.P. Kotenev, “Exact relation for determining the pressure distribution on a sphere at an Arbitrary Mach number in a supersonic incoming flow”, Mathematical models and computer simulations, 7:2 (2015), 128–133 | DOI | MR

[11] P. Kutler, S.R. Chakravarthy, C.P. Lombard, Supersonic flow over ablated nosetips using an unsteady implicit numerical procedure, AIAA Paper 78-213, 1978, 14 pp. | Zbl

[12] I.G. Brykina, V.I. Sakharov, “Comparison of approximate analytical and numerical solutions for heat fluxes in viscous supersonic flow past a body”, Fluid Dynamics, 31:1 (1996), 107–113 | DOI | Zbl

[13] I.G. Brykina, Metody rascheta teploperedachi i trenia pri prostranstvennom giperzvukovom laminarnom obtekanii tel vo vsem diapazone chisel Rejnoldsa, avtoreferat dissert. dokt. fiz.-mat. nauk, MGU im. M.V. Lomonosova, M., 2013

[14] N.P. Kolina, “Laminatnyj pogranichnyj sloj na zatuplennykh osesimmetrichnykh telakh razlichnoy formy”, Trudy TSAGI, 1968, no. 1106, 268–328

[15] V.A. Bashkin, N.P. Kolina, “Laminarnyj pogranichnyj sloj na ellipsoidakh vrashcheniia”, Izvestia AN SSSR «Mekhanika zhidkosti i gaza», 1966, no. 8