Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_6_a1, author = {E. B. Savenkov and V. E. Borisov and B. V. Kritsky}, title = {Utilization of closest point projection surface representation in extended finite element method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {18--42}, publisher = {mathdoc}, volume = {31}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/} }
TY - JOUR AU - E. B. Savenkov AU - V. E. Borisov AU - B. V. Kritsky TI - Utilization of closest point projection surface representation in extended finite element method JO - Matematičeskoe modelirovanie PY - 2019 SP - 18 EP - 42 VL - 31 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/ LA - ru ID - MM_2019_31_6_a1 ER -
%0 Journal Article %A E. B. Savenkov %A V. E. Borisov %A B. V. Kritsky %T Utilization of closest point projection surface representation in extended finite element method %J Matematičeskoe modelirovanie %D 2019 %P 18-42 %V 31 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/ %G ru %F MM_2019_31_6_a1
E. B. Savenkov; V. E. Borisov; B. V. Kritsky. Utilization of closest point projection surface representation in extended finite element method. Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 18-42. http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/
[1] T. Belytschko, T. Black, “Elastic crack growth in finite elements with minimal remeshing”, Internat. J. Numer. Methods Engrg., 45 (1999), 601–620 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[2] N. Moes, J. Dolbow, T. Belytschko, “A finite element method for crack growth without remeshing”, Internat. J. Numer. Methods Engrg., 46 (1999), 131–150 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] T.P. Fries, T. Belytschko, “The extended/generalized finite element method: An overview of the method and its applications”, Intern. J. Numer. Methods Engrg., 84 (2012), 253–304 | MR
[4] T.P. Fries, N. Moes, A. Zilian (eds.), Int. J. Numer. Methods Eng., 86, The extended finite element method. Special issue (2011), 403–666 | DOI | MR | Zbl
[5] A. Gravouil, N. Moes, T. Belytschko, “Non-planar 3D crack growth by the extended finite element and level sets. Part II: Level set update”, Int. J. Num. Meth. Eng., 53 (2002), 2569–2586 | DOI
[6] N. Moes, A. Gravouil, T. Belytschko, “Non-planar 3D crack growth by the extended fiite element and level sets. Part I: Mechanical model”, Int. J. Numer. Meth. Engng., 53 (2002), 2549–2568 | DOI
[7] S.J. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, 2002 | MR
[8] M. Stolarska, D. Chopp, N. Moes, T. Belytschko, “Modelling crack growth by level sets in the extended finite element method”, Int. J. Numer. Meth. Engng., 51 (2001), 943–960 | DOI | Zbl
[9] C.B. Macdonald, J. Brandman, S.J. Ruuth, “Solving eigenvalue problems on curved surfaces using the Closest Point Method”, J. Comp. Phys., 230 (2011), 7944–7956 | MR | Zbl
[10] G. Ventura, E. Budyn, T. Belytschko, “Vector level sets for description of propagating cracks in finite elements”, Int. J. Numer. Meth. Engng., 58 (2003), 1571–1592 | DOI | Zbl
[11] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, C. Silva, “State of the Art in Surface Reconstruction from Point Clouds”, EUROGRAPHICS 2014, eds. S. Lefebvre, M. Spagnuolo, STAR - State of The Art Report, 2014
[12] A.V. Ivanov, E.B. Savenkov, “Simulation and visualization of the dynamics of a surface with a movable boundary on a stationary unstructured mesh”, Scientific Visualization, 9:2 (2017), 64–81
[13] T. März, C.B. Macdonald, “Calculus on surfaces with general closest point functions”, SIAM J. Numer. Anal., 50:6 (2012), 3303–3328 | DOI | MR | Zbl
[14] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Butterworth-Heinemann, 2005 | MR | Zbl
[15] A.F. Bower, Applied Mechanics of Solids, CRC Press, 2009