Utilization of closest point projection surface representation in extended finite element method
Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 18-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently X-FEM approach is widely used computational technique for solution of solid mechanics problems given a number of large scale fractures. Its main advantage is a possibility to use computational meshes which do not fit fractures midsurface geometry and possibility for an exact accounting for singular asymptotic of the solution in the neighborhood of the fractures fronts. One of the key components of the method is representation of the fractures midsurface in the algorithm. Usually implicit representation is used based on the level set method. Such approach is efficient and robust and allows to perform simulation in the presence with evolutionary fractures. In this paper we present a variant of the X-FEM approach which utilizes fracture midsurface representation based on closest point projection method and provides, up to authors’ opinion, certain benefits comparably to the classical X-FEM. We provide a short overview of the X-FEM technique. The proposed algorithm is described in details and its advantages are formulated. We consider questions of numerical integration of function defined at closest point projection surfaces, local recovery of the level set function and computation of local basises in the neighborhood of the points at the surface and its boundary. Algorithmic details of the proposed method are described. Finally we present some numerical results which demonstrate application of the proposed algorithm and its capabilities.
Keywords: hydraulic fracture problem, poroelastic medium, incomplete coupling principle.
@article{MM_2019_31_6_a1,
     author = {E. B. Savenkov and V. E. Borisov and B. V. Kritsky},
     title = {Utilization of closest point projection surface representation in extended finite element method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--42},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/}
}
TY  - JOUR
AU  - E. B. Savenkov
AU  - V. E. Borisov
AU  - B. V. Kritsky
TI  - Utilization of closest point projection surface representation in extended finite element method
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 18
EP  - 42
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/
LA  - ru
ID  - MM_2019_31_6_a1
ER  - 
%0 Journal Article
%A E. B. Savenkov
%A V. E. Borisov
%A B. V. Kritsky
%T Utilization of closest point projection surface representation in extended finite element method
%J Matematičeskoe modelirovanie
%D 2019
%P 18-42
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/
%G ru
%F MM_2019_31_6_a1
E. B. Savenkov; V. E. Borisov; B. V. Kritsky. Utilization of closest point projection surface representation in extended finite element method. Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 18-42. http://geodesic.mathdoc.fr/item/MM_2019_31_6_a1/

[1] T. Belytschko, T. Black, “Elastic crack growth in finite elements with minimal remeshing”, Internat. J. Numer. Methods Engrg., 45 (1999), 601–620 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[2] N. Moes, J. Dolbow, T. Belytschko, “A finite element method for crack growth without remeshing”, Internat. J. Numer. Methods Engrg., 46 (1999), 131–150 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] T.P. Fries, T. Belytschko, “The extended/generalized finite element method: An overview of the method and its applications”, Intern. J. Numer. Methods Engrg., 84 (2012), 253–304 | MR

[4] T.P. Fries, N. Moes, A. Zilian (eds.), Int. J. Numer. Methods Eng., 86, The extended finite element method. Special issue (2011), 403–666 | DOI | MR | Zbl

[5] A. Gravouil, N. Moes, T. Belytschko, “Non-planar 3D crack growth by the extended finite element and level sets. Part II: Level set update”, Int. J. Num. Meth. Eng., 53 (2002), 2569–2586 | DOI

[6] N. Moes, A. Gravouil, T. Belytschko, “Non-planar 3D crack growth by the extended fiite element and level sets. Part I: Mechanical model”, Int. J. Numer. Meth. Engng., 53 (2002), 2549–2568 | DOI

[7] S.J. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, 2002 | MR

[8] M. Stolarska, D. Chopp, N. Moes, T. Belytschko, “Modelling crack growth by level sets in the extended finite element method”, Int. J. Numer. Meth. Engng., 51 (2001), 943–960 | DOI | Zbl

[9] C.B. Macdonald, J. Brandman, S.J. Ruuth, “Solving eigenvalue problems on curved surfaces using the Closest Point Method”, J. Comp. Phys., 230 (2011), 7944–7956 | MR | Zbl

[10] G. Ventura, E. Budyn, T. Belytschko, “Vector level sets for description of propagating cracks in finite elements”, Int. J. Numer. Meth. Engng., 58 (2003), 1571–1592 | DOI | Zbl

[11] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, C. Silva, “State of the Art in Surface Reconstruction from Point Clouds”, EUROGRAPHICS 2014, eds. S. Lefebvre, M. Spagnuolo, STAR - State of The Art Report, 2014

[12] A.V. Ivanov, E.B. Savenkov, “Simulation and visualization of the dynamics of a surface with a movable boundary on a stationary unstructured mesh”, Scientific Visualization, 9:2 (2017), 64–81

[13] T. März, C.B. Macdonald, “Calculus on surfaces with general closest point functions”, SIAM J. Numer. Anal., 50:6 (2012), 3303–3328 | DOI | MR | Zbl

[14] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Butterworth-Heinemann, 2005 | MR | Zbl

[15] A.F. Bower, Applied Mechanics of Solids, CRC Press, 2009