Waves in a centrifuged layer of a rotating viscous fluid with an inertial surface
Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model for describing wave motions of a flotation, viscous, non-compressible fluid partially filling the cavity of a rapidly rotating circular cylinder is proposed. Flotation fluid is a fluid with an inertial surface formed by small mass particles floating on a free surface without interaction. Gyroscopic waves in a centrifuged flotation fluid layer on a solid wall of the rotor cavity are studied.
Mots-clés : flotation viscous fluid
Keywords: stability, inertial (gyroscopic) waves.
@article{MM_2019_31_6_a0,
     author = {I. N. Soldatov and N. V. Klyueva},
     title = {Waves in a centrifuged layer of a rotating viscous fluid with an inertial surface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_6_a0/}
}
TY  - JOUR
AU  - I. N. Soldatov
AU  - N. V. Klyueva
TI  - Waves in a centrifuged layer of a rotating viscous fluid with an inertial surface
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 17
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_6_a0/
LA  - ru
ID  - MM_2019_31_6_a0
ER  - 
%0 Journal Article
%A I. N. Soldatov
%A N. V. Klyueva
%T Waves in a centrifuged layer of a rotating viscous fluid with an inertial surface
%J Matematičeskoe modelirovanie
%D 2019
%P 3-17
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_6_a0/
%G ru
%F MM_2019_31_6_a0
I. N. Soldatov; N. V. Klyueva. Waves in a centrifuged layer of a rotating viscous fluid with an inertial surface. Matematičeskoe modelirovanie, Tome 31 (2019) no. 6, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2019_31_6_a0/

[1] Petters A. S., “The effect of a floating mat on water waves”, Comm. Pure and Appl. Math., 3:4 (1950), 319–354 | DOI | MR

[2] Mandal B. N., “Water waves generated by disturbance at an inertial surface”, Appl. Sci. Res., 5:1 (1988), 67–73 | DOI

[3] Gabov S. A., “O sushchestvovanii ustanovivshikhsia voln konechnoi amplitudy na poverkhnosti flotiruiushchei zhidkosti”, ZhVM i MF, 28:10 (1988), 1507–1519 | Zbl

[4] Gabov S. A., Tverskoi M. B., “O vychislenii parametrov ustanovivshikhsia voln konechnoi amplitudy na poverkhnosti flotiruiushchei zhidkosti”, Matematicheskoe modelirovanie, 1:2 (1989), 109–118

[5] Gabov S. A., Tverskoi M. B., “Techenie flotiruiushchei zhidkosti konechnoi glubiny pri nalichii peremennogo davleniia na svobodnoi poverkhnosti”, Matematicheskoe modelirovanie, 1:3 (1989), 110–122

[6] Gabov S. A., Sveshnikov A. G., “Matematicheskie zadachi dinamiki flotiruiushchei zhidkosti”, Itogi nauki i tekhn. Ser. Mat. anal., 28, VINITI, M., 1990, 3–86

[7] Coppola G., Semeraro O., “Interfacial instability of two rotating viscous immiscible fluids in a cylinder”, Phys. Fluids, 23 (2011), 064105 | DOI

[8] Derendiaev N. V., Ustoichivost vrashcheniia rotornykh sistem, soderzhashchikh zhidkost, Izd-vo Nizhegorodskogo universiteta, Nizhnii Novgorod, 2014, 154 pp.

[9] Soldatov I. N., “Gyroscopic waves in a rotating liquid layer”, Journal of Applied Mechanics and Technical Physics, 49:2 (2008), 167–171 | DOI | MR | Zbl