Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_5_a7, author = {P. A. Bakhvalov}, title = {On gradient calculation in flux correction method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {121--144}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_5_a7/} }
P. A. Bakhvalov. On gradient calculation in flux correction method. Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 121-144. http://geodesic.mathdoc.fr/item/MM_2019_31_5_a7/
[1] B. Stoufflet, J. Periaux, F. Fezoui, A. Dervieux, Numerical simulation of 3-D hypersonic Euler flows around space vehicles using adapted finite elements, AIAA Paper No 87-0560
[2] T.J. Barth, Numerical aspects of computing high reynolds number flows on unstructured meshes, AIAA Paper No 91-0721
[3] B. Koobus, F. Alauzet, A. Dervieux, “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl
[4] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, International journal for numerical methods in fluids, 81:6 (2016), 331–356 | DOI | MR
[5] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl
[6] I. Abalakin, V. Bobkov, V. Kozubskaya, “Implementation of the Low Mach Number Method for Calculating Flows in the NOISEtte Software Package”, Math. Mod. and Comp. Simul., 9:6 (2017), 689–697 | MR | Zbl
[7] A. Katz, V. Sankaran, “An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids”, J. Sci. Comput., 51:2 (2012), 375–393 | DOI | MR | Zbl
[8] B. Pincock, A. Katz, “High-order flux correction for viscous flows on arbitrary unstructured grids”, J. Sci. Comput., 61:2 (2014), 454–476 | DOI | MR | Zbl
[9] C.D. Work, A.J. Katz, Aspects of the flux correction method for solving the Navier-Stokes equations on unstructured meshes, AIAA paper No 2015-0834
[10] A. Katz, D. Work, “High-order flux correction/finite difference schemes for strand grids”, Journal of Computational Physics, 282 (2015), 360–380 | DOI | MR | Zbl
[11] O. Tong, Y. Yanagita, R. Shaap, S. Harris, A. Katz, High-Order strand grids methods for shock-turbulence interaction, AIAA paper No 2015-2283
[12] H. Nishikawa, “Accuracy-preserving Source Term Quadrature for Third-Order Edge-Based Discretization”, Journal of computational physics, 344 (2017), 595–622 | DOI | MR | Zbl
[13] P. Bakhvalov, T. Kozubskaya, “Modification of Flux Correction method for accuracy improvement on unsteady problems”, J. Comput. Phys., 338 (2017), 199–216 | DOI | MR
[14] P.A. Bakhvalov, “Realizatsya metoda korrektsii potokov na gibridnyh nestrukturirovannih setkah”, Keldysh Institute preprints, 2017, 038, 28 pp.
[15] T.J. Barth, A 3-D upwind Euler solver for unstructured meshes, AIAA Paper No 91-1548
[16] P. Bakhvalov, T. Kozubskaya, “Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes”, Comp. Math. Math. Phys., 57:4 (2017), 680–697 | DOI | MR | Zbl
[17] H. Nishikawa, Beyond Interface Gradient. A General Principle for Constructing Diffusion Schemes, AIAA Paper No 2010-5093
[18] A.G. Kulikovsky, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Taylor Francis Inc., United States, 2000 | MR
[19] P.L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Computational Physics, 43:2 (1981), 357–372 | DOI | MR | Zbl
[20] H. Luo, J.D. Baumt, R. Lohner, “Edge-Based Finite Element Scheme for the Euler Equations”, AIAA Journal, 32:6 (1994) | DOI | Zbl
[21] P. Eliasson, EDGE, a Navier-Stokes solver for unstructured grids, Tech. Rep. FOI-R-0298-SE, FOI Swedish defence research agency, Division of Aeronautics, FFA, SE-172 90 STOCKHOLM, December 2001
[22] Y. Nakashima, N. Watanabe, H. Nishikawa, Hyperbolic Navier–Stokes solver for threedimensional flows, AIAA Paper No 2016-1101
[23] H. Nishikawa, Alternative formulations for first-, second-, and third-order hyperbolic Navier-Stokes schemes, AIAA Paper No 2015-2451
[24] C. Debiez, A. Dervieux, “Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations”, Computers and Fluids, 29:1 (2000), 89–118 | DOI | MR | Zbl
[25] C. Debiez, A. Dervieux, K. Mer, B. Nkonga, “Computation of unsteady flows with mixed finite volume/finite element upwind methods”, International journal for numerical method in fluids, 27 (1998), 193–206 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[26] B. Diskin, J.-L. Thomas, “Notes on accuracy of finite-volume discretization schemes on irregular grids”, Applied Numerical Mathematics, 60:3 (2010), 224–226 | DOI | MR | Zbl
[27] P.A. Bakhvalov, “O poryadke tochnosti reberno-orientirovannyh shem na setkah spetsial'nogo vida”, Keldysh Institute preprints, 2017, 079, 32 pp. | Zbl
[28] H. Nishikawa, “Divergence formulation of source term”, Journal of Computational Physics, 231 (2012), 6393–6400 | DOI | MR | Zbl
[29] L.G. Loitsyansky, Mechanics of Liquids and Gases, Pergamon Press, Oxford, UK, 1966, 804 pp. | MR
[30] E. Turkel, “Preconditioning Techniques in Computational Fluid Dynamics”, Annual Review of Fluid Mechanics, 31 (1999), 385–416 | DOI | MR
[31] H. Guillard, C. Viozat, “On the behaviour of upwind schemes in the low Mach number limit”, Computers and Fluids, 28:1 (1999), 63–86 | DOI | MR | Zbl
[32] S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Theory of Concentrated Vortices, Springer-Verlag, Berlin–Heidelberg, 2007, 487 pp. | MR | Zbl
[33] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, 1997 | MR
[34] P.A. Bakhvalov, “Metod nestatsionarnogo korrektora dlya analiza tochnosti lineinyh poludiskretnyh shem”, Keldysh Institute preprints, 2018, 123, 38 pp.
[35] P. Woodward, P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks”, Journal of computational physics, 54 (1984), 115–173 | DOI | MR | Zbl
[36] I.Y. Tagirova, A.V. Rodionov, “Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes”, Math. Models. Comput. Simul., 27 (2015), 47–64
[37] I.V. Abalakin, P.A. Bakhvalov, A.V. Gorobets, A.P. Duben, T.K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISETTE dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125