Wave packet dynamics in the vicinity of black hole "apparent horizon"
Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 103-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of solutions of the Klein–Gordon equations for various metrics of the general theory of relativity are considered. It is shown that the presence of singular points of the metric leads to qualitative rearrangement solutions of this equation, and the desingularization of solutions by a choice of a new metric requires a priori assumptions that can lead to a formally mathematically correct, but paradoxical physical meaning, results.
Mots-clés : Heun's equation
Keywords: hypergeometric equation, critical point, event horizon, wave packet, semiclassical approximation.
@article{MM_2019_31_5_a6,
     author = {N. N. Fimin and V. M. Chechetkin and Yu. N. Orlov},
     title = {Wave packet dynamics in the vicinity of black hole "apparent horizon"},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--120},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/}
}
TY  - JOUR
AU  - N. N. Fimin
AU  - V. M. Chechetkin
AU  - Yu. N. Orlov
TI  - Wave packet dynamics in the vicinity of black hole "apparent horizon"
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 103
EP  - 120
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/
LA  - ru
ID  - MM_2019_31_5_a6
ER  - 
%0 Journal Article
%A N. N. Fimin
%A V. M. Chechetkin
%A Yu. N. Orlov
%T Wave packet dynamics in the vicinity of black hole "apparent horizon"
%J Matematičeskoe modelirovanie
%D 2019
%P 103-120
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/
%G ru
%F MM_2019_31_5_a6
N. N. Fimin; V. M. Chechetkin; Yu. N. Orlov. Wave packet dynamics in the vicinity of black hole "apparent horizon". Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 103-120. http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/

[1] K. Schwarzschild, “Über das Gravitationsfield eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 1916, 189–196 | Zbl

[2] Ya.B. Zeldovich, I.D. Novikov, Relativistic astrophysics. Stars and relativity, University of Chicago Press, Chicago, 1971

[3] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman Comp., San Francisco, 1973 | MR

[4] E. Cordinalesi, A. Papapetrou, “Spinning test particles in general relativity”, Proc. Roy. Soc. Lond. A, A209 (1951), 259–268 | MR

[5] S.J. Summer, R. Verch, “Modular inclusion, the Hawking temperature and field theory in curved space-time”, Lett. Math. Phys., 37 (1996), 145–158 | DOI | MR | Zbl

[6] R. Penrose, “Gravitational collapse: the role of general relativity”, Riv. Nuovo Cimento, 1 (1969), 252–276

[7] D. Christodolou, “Reversible and irreversible transformations in black-hole physics”, Phys. Rev. Lett., 25 (1970), 1596 | DOI

[8] I.D. Novikov, Physics of black holes, Nauka, M., 1986, 328 pp.

[9] A.A. Starobinskii, “Amplification of waves during reflection from a rotating “black hole””, Sov. Phys. JETP, 37:1 (1973), 28–32

[10] A.A. Starobinskii, S.M. Churilov, “Amplification of electromagnetic and gravitational waves scattered by a rotating black hole”, Sov. Phys. JETP, 38:1 (1974), 1–5

[11] W.G. Unruh, “Absorption cross section of small black holes”, Phys. Rev. D, 14 (1976), 3251 | DOI

[12] S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press, New York, 1992 | MR

[13] J.A. Futterman, F.A. Handler, R.A. Matzner, Scattering from black holes, Cambridge University Press, Cambridge–New York, 1988 | MR | Zbl

[14] J.D. Bekenstein, How fast does information leak out from a black hole?, Phys. Rev. Lett., 70 (1993), 3680–3683 | DOI | MR | Zbl

[15] J.M. Malcadena, A. Strominger, “Black hole greybody factors and D-brane spectroscopy”, Phys. Rev. D, 55 (1997), 861 | DOI | MR

[16] M. Yu. Kuchiev, V.V. Flambaum, “Scattering of scalar particles by a black hole”, Phys. Rev. D, 70 (2004), 044022 | DOI | MR

[17] D.N. Page, “Dirac equation around a charged, rotating black hole”, Phys. Rev. D, 14 (1976), 1509 | DOI

[18] I. Semiz, “Dirac equation is separable on the dyon black hole metric”, Phys. Rev. D, 46 (1992), 5414 | DOI | MR

[19] S.R. Dolan, J.R. Gair, “The massive Dirac field on a rotating black hole spacetime: angular solutions”, Class. Quant. Grav., 26:17 (2009), 175020 | DOI | MR | Zbl

[20] A. Bachelot, “Gravitational scattering of electromagnetic field by a Schwarzschild black hole”, Ann. Inst. Henri Poincare - Physique Theorique, 54 (1991), 261–320 | MR | Zbl

[21] N.B. Narozhnyi, A.M. Fedotov, Exact modes for scalar field in the 2D DGBH metric, private communications

[22] E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differential-gleichungen, B.G. Teubner, Leipzig, 1977 | MR

[23] S.Q. Wu, X. Cai, “Massive complex scalar field in the Kerr-Sen geometry: exact solution of wave equation and Hawking radiation”, J. Math. Phys., 44 (2003), 1084–1088 | DOI | MR | Zbl

[24] A. Ronveaux (ed.), Heun's differential equations, Oxford University Press, Oxford–New York–Tokyo, 1995 | Zbl

[25] T. Damour, R. Ruffini, “Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism”, Phys. Rev. D, 14 (1976), 332 | DOI

[26] S. Sannan, “Heuristic derivation of the probability distributions of particles emitted by a black hole”, Gen. Rel. Grav., 20 (1988), 239–246 | DOI | MR

[27] S.Yu. Slavyanov, W. Lay, Special functions: a unified theory based on singularities, Oxford University Press, Oxford–New York, 2000 | MR | Zbl

[28] G.M. Murphi, Ordinary differential equations and their solutions, D. Van Nostrand, New York, 1960 | MR

[29] A.F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics: a unified introduction and application, Birkhauser, Boston, 2013 | MR