Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_5_a6, author = {N. N. Fimin and V. M. Chechetkin and Yu. N. Orlov}, title = {Wave packet dynamics in the vicinity of black hole "apparent horizon"}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {103--120}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/} }
TY - JOUR AU - N. N. Fimin AU - V. M. Chechetkin AU - Yu. N. Orlov TI - Wave packet dynamics in the vicinity of black hole "apparent horizon" JO - Matematičeskoe modelirovanie PY - 2019 SP - 103 EP - 120 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/ LA - ru ID - MM_2019_31_5_a6 ER -
N. N. Fimin; V. M. Chechetkin; Yu. N. Orlov. Wave packet dynamics in the vicinity of black hole "apparent horizon". Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 103-120. http://geodesic.mathdoc.fr/item/MM_2019_31_5_a6/
[1] K. Schwarzschild, “Über das Gravitationsfield eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 1916, 189–196 | Zbl
[2] Ya.B. Zeldovich, I.D. Novikov, Relativistic astrophysics. Stars and relativity, University of Chicago Press, Chicago, 1971
[3] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman Comp., San Francisco, 1973 | MR
[4] E. Cordinalesi, A. Papapetrou, “Spinning test particles in general relativity”, Proc. Roy. Soc. Lond. A, A209 (1951), 259–268 | MR
[5] S.J. Summer, R. Verch, “Modular inclusion, the Hawking temperature and field theory in curved space-time”, Lett. Math. Phys., 37 (1996), 145–158 | DOI | MR | Zbl
[6] R. Penrose, “Gravitational collapse: the role of general relativity”, Riv. Nuovo Cimento, 1 (1969), 252–276
[7] D. Christodolou, “Reversible and irreversible transformations in black-hole physics”, Phys. Rev. Lett., 25 (1970), 1596 | DOI
[8] I.D. Novikov, Physics of black holes, Nauka, M., 1986, 328 pp.
[9] A.A. Starobinskii, “Amplification of waves during reflection from a rotating “black hole””, Sov. Phys. JETP, 37:1 (1973), 28–32
[10] A.A. Starobinskii, S.M. Churilov, “Amplification of electromagnetic and gravitational waves scattered by a rotating black hole”, Sov. Phys. JETP, 38:1 (1974), 1–5
[11] W.G. Unruh, “Absorption cross section of small black holes”, Phys. Rev. D, 14 (1976), 3251 | DOI
[12] S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press, New York, 1992 | MR
[13] J.A. Futterman, F.A. Handler, R.A. Matzner, Scattering from black holes, Cambridge University Press, Cambridge–New York, 1988 | MR | Zbl
[14] J.D. Bekenstein, How fast does information leak out from a black hole?, Phys. Rev. Lett., 70 (1993), 3680–3683 | DOI | MR | Zbl
[15] J.M. Malcadena, A. Strominger, “Black hole greybody factors and D-brane spectroscopy”, Phys. Rev. D, 55 (1997), 861 | DOI | MR
[16] M. Yu. Kuchiev, V.V. Flambaum, “Scattering of scalar particles by a black hole”, Phys. Rev. D, 70 (2004), 044022 | DOI | MR
[17] D.N. Page, “Dirac equation around a charged, rotating black hole”, Phys. Rev. D, 14 (1976), 1509 | DOI
[18] I. Semiz, “Dirac equation is separable on the dyon black hole metric”, Phys. Rev. D, 46 (1992), 5414 | DOI | MR
[19] S.R. Dolan, J.R. Gair, “The massive Dirac field on a rotating black hole spacetime: angular solutions”, Class. Quant. Grav., 26:17 (2009), 175020 | DOI | MR | Zbl
[20] A. Bachelot, “Gravitational scattering of electromagnetic field by a Schwarzschild black hole”, Ann. Inst. Henri Poincare - Physique Theorique, 54 (1991), 261–320 | MR | Zbl
[21] N.B. Narozhnyi, A.M. Fedotov, Exact modes for scalar field in the 2D DGBH metric, private communications
[22] E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differential-gleichungen, B.G. Teubner, Leipzig, 1977 | MR
[23] S.Q. Wu, X. Cai, “Massive complex scalar field in the Kerr-Sen geometry: exact solution of wave equation and Hawking radiation”, J. Math. Phys., 44 (2003), 1084–1088 | DOI | MR | Zbl
[24] A. Ronveaux (ed.), Heun's differential equations, Oxford University Press, Oxford–New York–Tokyo, 1995 | Zbl
[25] T. Damour, R. Ruffini, “Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism”, Phys. Rev. D, 14 (1976), 332 | DOI
[26] S. Sannan, “Heuristic derivation of the probability distributions of particles emitted by a black hole”, Gen. Rel. Grav., 20 (1988), 239–246 | DOI | MR
[27] S.Yu. Slavyanov, W. Lay, Special functions: a unified theory based on singularities, Oxford University Press, Oxford–New York, 2000 | MR | Zbl
[28] G.M. Murphi, Ordinary differential equations and their solutions, D. Van Nostrand, New York, 1960 | MR
[29] A.F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics: a unified introduction and application, Birkhauser, Boston, 2013 | MR