Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_5_a4, author = {Y. A. Kriksin and V. F. Tishkin}, title = {Variational entropic regularization of discontinuous {Galerkin} method for gas dynamics equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {69--84}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_5_a4/} }
TY - JOUR AU - Y. A. Kriksin AU - V. F. Tishkin TI - Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations JO - Matematičeskoe modelirovanie PY - 2019 SP - 69 EP - 84 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_5_a4/ LA - ru ID - MM_2019_31_5_a4 ER -
Y. A. Kriksin; V. F. Tishkin. Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 69-84. http://geodesic.mathdoc.fr/item/MM_2019_31_5_a4/
[1] A.G. Kulikovsky, N.V. Pogorelov, A.Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Taylor Francis Inc., 2000 | MR
[2] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, v. 6, 2nd ed., Butterworth-Heinemann, 1987, 552 pp.
[3] S.K. Godunov, A.V. Zabrodin, M.Ia. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.
[4] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[5] B. Cockburn, G.E. Karniadakis, Ch.-W. Shu, The Development of Discontinuous Galerkin Methods, IMA Preprint Series # 1662, Institute for Mathematics and its Applications, University of Minnisota, December 1999, 51 pp. | MR
[6] B. Cockburn, Ch.-W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, Journal of Scientific Computing, 16:3 (2001), 173–261 | DOI | MR | Zbl
[7] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. on Numer. Anal., 29 (2002), 1749–1779 | DOI | MR
[8] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of averaging to smooth the solution in DG method”, Keldysh Institute preprints, 2017, 089, 32 pp. | Zbl
[9] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Impact of Different Limiting Functions on the Order of Solution Obtained by RKDG”, Math. Mod. Comp. Simul., 5:4 (2013), 346–349 | DOI | MR | Zbl
[10] M.M. Krasnov, P.A. Kuchugov, M.E. Ladonkina, V.F. Tishkin, “Obobshchenie metoda Godunova, ispolzuiushchego kusochno-polinomialnye approksimatsii v mnogomernom sluchae”, Supervychisleniia i matematicheskoe modelirovanie, Trudy XVI mezhdunarodnoi konferentsii (3–7 oktiabria 2016 g.), ed. R.M. Shagaliev, FGUP “RFIATSVNIIEF”, Sarov, 2017, 168–183
[11] M.E. Ladonkina, V.F. Tishkin, “On Godunov type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl
[12] V.F. Tishkin, V.T. Zhukov, E.E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Math. Mod. Comp. Simul., 8:5 (2016), 548–556 | DOI | MR | Zbl
[13] P.G. Le Floch, J.M. Mercier, C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order”, SIAM J. Numer. Anal., 40:5 (2002), 1968–1992 | DOI | MR
[14] F. Lagoutiere, C.R. Acad, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction”, Comp. Rendus Mathematique, 338:7 (2004), 549–554 | DOI | MR | Zbl
[15] H. Zakerzadeh, U.S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws”, IMA J. of Numerical Analysis, 36:2 (2016), 633–654 | DOI | MR | Zbl
[16] U.S. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws”, Found. Comput. Math., 17:3 (2017), 763–827 | DOI | MR | Zbl
[17] A.R. Winters, G.J. Gassner, “A Comparison of Two Entropy Stable Discontinuous Galerkin Spectral Element Approximations for the Shallow Water Equations with Non-Constant Topography”, Journal of Computational Physics, 301 (2015), 357–376 | DOI | MR | Zbl
[18] G.J. Gassner, A.R. Winters, D.A. Kopriva, “A Well Balanced and Entropy Conservative Discontinuous Galerkin Spectral Element Method for the Shallow Water Equations”, Applied Mathematics and Computation, 272 (2016), 291–308 | DOI | MR | Zbl
[19] T. Chen, Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, J. Comp. Phys., 345 (2017), 427–461 | DOI | MR | Zbl
[20] I.B. Petrov, A.S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, USSR Computational Mathematics and Mathematical Physics, 24:4 (1984), 128–138 | DOI | MR | Zbl
[21] Y.A. Kriksin, V.F. Tishkin, “Entropic regularization of discontinuous Galerkin method in one-dimensional problems of gas dynamics”, Keldysh Institute preprints, 2018, 100, 22 pp.