The model of the dynamics of number of arachnids in the spectrum of their interspecies competitive relationships
Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the construction and research of a mathematical model for studying the dynamics of the number of arachnids herpetobionts in the spectrum of their trophic competitive relations. The problems of determining the necessary variables and calculation coefficients for constructing and studying the model in relation to various trophic situations are discussed. The basis for the model was the nonlinear differential equation of Lotka–Volterra. The studies carried out with the aid of the constructed model have shown that the response of the system to any perturbation is of an oscillatory nature. The nature of the solutions depends on the initial perturbation, and differ in magnitude of the amplitude and period of the oscillations. The steady-state solutions of the mathematical model are multi-period oscillations, which are characteristic for biological systems. Numerical and graphically presented data of the research results of the proposed model are presented.
Keywords: arachnids, number dynamics, trophic situations, competitive relations, mathematical model.
@article{MM_2019_31_4_a7,
     author = {E. F. Yusifov and A. A. Mamedov and N. E. Novruzov and V. S. Khalilova},
     title = {The model of the dynamics of number of arachnids in the spectrum of their interspecies competitive relationships},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a7/}
}
TY  - JOUR
AU  - E. F. Yusifov
AU  - A. A. Mamedov
AU  - N. E. Novruzov
AU  - V. S. Khalilova
TI  - The model of the dynamics of number of arachnids in the spectrum of their interspecies competitive relationships
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 131
EP  - 144
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a7/
LA  - ru
ID  - MM_2019_31_4_a7
ER  - 
%0 Journal Article
%A E. F. Yusifov
%A A. A. Mamedov
%A N. E. Novruzov
%A V. S. Khalilova
%T The model of the dynamics of number of arachnids in the spectrum of their interspecies competitive relationships
%J Matematičeskoe modelirovanie
%D 2019
%P 131-144
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a7/
%G ru
%F MM_2019_31_4_a7
E. F. Yusifov; A. A. Mamedov; N. E. Novruzov; V. S. Khalilova. The model of the dynamics of number of arachnids in the spectrum of their interspecies competitive relationships. Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 131-144. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a7/

[1] D.M. Smith, Models in ecology, Cambrige University Press, 1974 | Zbl

[2] A.A. Sharov, “Modelirovanie dinamiki chislennosti populiatsii nasekomykh”, Itogi nauki i tekhniki. Seriia “Entomologiia”, 6, VINITI, M., 1986, 3–115 | Zbl

[3] A.N. Frolov, “Dinamika chislennosti i prognoz massovykh razmnozhenii vrednykh nasekomykh: istoricheskii ekskurs i puti razvitiia. Analiticheskii obzor”, Vestnik zashchity rastenii, 2017, no. 4(94), 5–21

[4] A.P. Shapiro, “Matematicheskie modeli konkurentsii”, Upravlenie i informatsiia, 10, DVNTs AN SSSR, Vladivostok, 1974, 5–75

[5] Yu. M. Svirizhev, E. Ya. Elizarov, Matematicheskoe modelirovanie biologicheskikh soobshchestv, Nauka, M., 1972, 150 pp.

[6] G. Yu. Riznichenko, Lektsii po matematicheskim modeliam v biologii, Institut kompiuternykh issledovanii, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2010, 560 pp.

[7] Yu.S. Malyshev, “K voprosu ob indikatsii konkurentnykh otnoshenii mezhdu sistematicheski i ekologicheski blizkimi vidami zhivotnykh”, Materialy II Mezhdunarodnoi konferentsii Sovremennye problemy biologicheskoi evoliutsii, 2014, 345–349

[8] I.K. Yakovlev, Zh.I. Reznikova, “Mezhvidovye vzaimodeistviia kak arena «bystroi evoliutsii»: modeli i perspektivy issledovanii”, Materialy II Mezhdunarodnoi konferentsii Sovremennye problemy biologicheskoi evoliutsii, M., 2014, 54–56

[9] G. Dai, M. Tang, “Coexistence Region and Global Dynamics of a Harvesting Predator-Prey Systems”, SIAM J. Appl. Math., 58:1 (1998), 193–210 | DOI | MR | Zbl

[10] Yu.V. Utyupin, L.V. Nedorezov, “About a continuous-discrete model of Predator-Prey system dynamics”, Population Dynamics: Analysis, Modelling, Forecast, 3:2 (2014), 55–63

[11] Yu.M. Aponin, E.A. Aponina, “Matematicheskaia model soobshchestva khishchnik–zhertva s nizhnim porogom chislennosti zhertvy”, Kompiuternye issledovaniia i modelirovanie, 1:1 (2009), 51–56

[12] D.D. Murray, Mathematical biology, Springer, New York, 2002, 551 pp. | MR | Zbl

[13] N.A. Gasratova, M.V. Stolbovaya, E.G. Neverova, A.S. Berber, “Matematicheskaia model «resurs-potrebitel»”, Molodoi uchenyi, 2014, no. 10, 5–13

[14] A. Bratus, A. Novozhilov, A. Platonov, Dinamicheskie sistemy i modeli v biologii, Litres, 2017, 400 pp.

[15] A.S. Isaev, E.N. Palnikova, V.G. Sukhovolsky, O.V. Tarasova, Dinamika chislennosti lesnykh nasekomykh-fillofagov: modeli i prognozy, Tovarishchestvo nauchn. izd. KMK, M., 2015, 262 pp.

[16] E. Ya. Frisman, E.I. Skaletsky, “Strannye attraktory v prosteishikh modeliakh dinamiki chislennosti biologicheskikh populiatsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:6 (1994), 988–1008 | Zbl

[17] J. Odum, Fundamentals of ecology, Philadelfia, 1953, 384 pp.

[18] E. Pianca, Evolutionary ecology, Harper and Row, New York, 1978

[19] M.S. Gilyarov, Metody pochvenno-zoologicheskikh issledovanii, Nauka, M., 1975, 280 pp.

[20] Yu.A. Pesenko, Printsipy i metody kolichestvennogo analiza v faunisticheskikh issledovaniiakh, Nauka, M., 1982, 288 pp.

[21] K.K. Fasoulati, Polevoe izuchenie nazemnykh bespozvonochnykh, Vysshaia shkola, M., 1971, 424 pp.

[22] A.J. Lotka, Elements of physical biology, Williams and Wilkins, Baltimore, 1925, 495 pp. | Zbl

[23] V. Volterra, Lecóns sur la theorie mathematique de la lutte pour la vie, Gauthiers-Villars, P., 1931 | MR

[24] A.D. Bazykin, Matematicheskaia biofizika vzaimodeistvuiushchikh populiatsii, Nauka, M., 1985, 181 pp.

[25] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobelkov, Chislennye metody, Laboratoriia Bazovykh Znanii, M., 2001, 630 pp.