Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_4_a6, author = {Ch. Zhang and I. S. Menshov}, title = {Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed {Euler} grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--130}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/} }
TY - JOUR AU - Ch. Zhang AU - I. S. Menshov TI - Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids JO - Matematičeskoe modelirovanie PY - 2019 SP - 111 EP - 130 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/ LA - ru ID - MM_2019_31_4_a6 ER -
%0 Journal Article %A Ch. Zhang %A I. S. Menshov %T Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids %J Matematičeskoe modelirovanie %D 2019 %P 111-130 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/ %G ru %F MM_2019_31_4_a6
Ch. Zhang; I. S. Menshov. Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids. Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 111-130. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/
[1] Galera S., Maire P. H., Breil J., “A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction”, J. Comput. Phys., 229 (2010), 5755–5787 | DOI | MR | Zbl
[2] Maire P. H., Abgrall R., Breil J., Ovadia J., “A cell-centered Lagrangian scheme for two-dimensional compressible flow problems”, SIAM J. Sci. Comput., 29 (2007), 1781–1824 | DOI | MR | Zbl
[3] Glimm J., Li X. L., Liu Y. J., Xu Z. L., Zhao N., “Conservative front tracking with improved accuracy”, SIAM J. Numer. Anal., 41 (2003), 1926–1947 | DOI | MR | Zbl
[4] Terashima H., Tryggvason G., “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows”, J. Comput. Phys., 228 (2009), 4012–4037 | DOI | Zbl
[5] Mulder W., Osher S., Sethian J. A., “Computing interface motion in compressible gas dynamics”, J. Comput. Phys., 100 (1992), 209–228 | DOI | MR | Zbl
[6] Abgrall R., “How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach”, J. Comput. Phys., 125 (1996), 150–160 | DOI | MR | Zbl
[7] Saurel R., Abgrall R., “A multiphase Godunov method for compressible multifluid and multiphase flows”, J. Comput. Phys., 150:2 (1999), 425–467 | DOI | MR | Zbl
[8] Menshov I., Zakharov P., “On the composite Riemann problem for multi-material fluid flows”, Int. J. Numer. Meth. Fluids, 76 (2014), 109–127 | DOI | MR
[9] Allaire G., Clerc S., Kokh S., “A five-equation model for the simulation of interfaces between compressible fluids”, J. Comput. Phys., 181 (2002), 577–616 | DOI | MR | Zbl
[10] Jaouen S., Lagoutière F., “Numerical transport of an arbitrary number of components”, Comput. Methods Appl. Math., 196 (2007), 3127–3140 | MR | Zbl
[11] Després B., Lagoutière F., “Contact discontinuity capturing schemes for linear advection, compressible gas dynamics”, J. Sci. Comput., 16 (2001), 479–524 | DOI | MR | Zbl
[12] Xiao F., Honma Y., Kono T., “A simple algebraic interface capturing scheme using hyperbolic tangent function”, Int. J. Numer. Mech. Fluids, 48 (2005), 1023–1040 | DOI | Zbl
[13] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion method for interface steepening in two-phase incompressible flow”, J. Comput. Phys., 230 (2011), 5155–5177 | DOI | MR | Zbl
[14] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion interface sharpening technique for two-phase compressible flow simulations”, J. Comput. Phys., 231 (2012), 4304–4323 | DOI | MR | Zbl
[15] Harten A., “The artificial compression method for computation of shocks and contact discontinuities, I: Single conservation laws”, Commun. Pure Appl. Math., 30 (1977), 611–638 | DOI | MR | Zbl
[16] Harten A., “The artificial compression method for computation of shocks and contact discontinuities, III: Self-adjusting hybrid schemes”, Math. Comput., 32 (1978), 363–389 | MR | Zbl