Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids
Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 111-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method for solving the transport equations of a multicomponent heterogeneous system on fixed Eulerian grids is considered. The system consists of an arbitrary number of components. Any two components are separated by a boundary (interface). Each component is characterized by a characteristic function — the volume fraction, which is transported in a given velocity field and determines the instantaneous distribution of the component in space. The feature of this system is that it requires two conditions to be satisfied. First, the volume fraction of each component should be in the interval [0,1], and, secondly, any partial sum of volume fractions should not exceed unity. To ensure these conditions, we introduce special characteristic functions instead of volume fractions and propose to solve the transport equations with respect to them. We prove that this approach ensures the fulfillment of the above conditions. The method is compatible with various TVD schemes (MINMOD, Van Leer, Van Albada, Superbee) and interface-sharpening methods (Limited downwind, THINC, Anti-diffusion, Artifical compression). The method is verified in the calculation of a number of test problems, using all the above schemes. Numerical results show the accuracy and reliability of the proposed method.
Keywords: eulerian grid, multicomponent flow, interface-sharpening method.
Mots-clés : transport
@article{MM_2019_31_4_a6,
     author = {Ch. Zhang and I. S. Menshov},
     title = {Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed {Euler} grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--130},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/}
}
TY  - JOUR
AU  - Ch. Zhang
AU  - I. S. Menshov
TI  - Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 111
EP  - 130
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/
LA  - ru
ID  - MM_2019_31_4_a6
ER  - 
%0 Journal Article
%A Ch. Zhang
%A I. S. Menshov
%T Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids
%J Matematičeskoe modelirovanie
%D 2019
%P 111-130
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/
%G ru
%F MM_2019_31_4_a6
Ch. Zhang; I. S. Menshov. Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids. Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 111-130. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a6/

[1] Galera S., Maire P. H., Breil J., “A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction”, J. Comput. Phys., 229 (2010), 5755–5787 | DOI | MR | Zbl

[2] Maire P. H., Abgrall R., Breil J., Ovadia J., “A cell-centered Lagrangian scheme for two-dimensional compressible flow problems”, SIAM J. Sci. Comput., 29 (2007), 1781–1824 | DOI | MR | Zbl

[3] Glimm J., Li X. L., Liu Y. J., Xu Z. L., Zhao N., “Conservative front tracking with improved accuracy”, SIAM J. Numer. Anal., 41 (2003), 1926–1947 | DOI | MR | Zbl

[4] Terashima H., Tryggvason G., “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows”, J. Comput. Phys., 228 (2009), 4012–4037 | DOI | Zbl

[5] Mulder W., Osher S., Sethian J. A., “Computing interface motion in compressible gas dynamics”, J. Comput. Phys., 100 (1992), 209–228 | DOI | MR | Zbl

[6] Abgrall R., “How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach”, J. Comput. Phys., 125 (1996), 150–160 | DOI | MR | Zbl

[7] Saurel R., Abgrall R., “A multiphase Godunov method for compressible multifluid and multiphase flows”, J. Comput. Phys., 150:2 (1999), 425–467 | DOI | MR | Zbl

[8] Menshov I., Zakharov P., “On the composite Riemann problem for multi-material fluid flows”, Int. J. Numer. Meth. Fluids, 76 (2014), 109–127 | DOI | MR

[9] Allaire G., Clerc S., Kokh S., “A five-equation model for the simulation of interfaces between compressible fluids”, J. Comput. Phys., 181 (2002), 577–616 | DOI | MR | Zbl

[10] Jaouen S., Lagoutière F., “Numerical transport of an arbitrary number of components”, Comput. Methods Appl. Math., 196 (2007), 3127–3140 | MR | Zbl

[11] Després B., Lagoutière F., “Contact discontinuity capturing schemes for linear advection, compressible gas dynamics”, J. Sci. Comput., 16 (2001), 479–524 | DOI | MR | Zbl

[12] Xiao F., Honma Y., Kono T., “A simple algebraic interface capturing scheme using hyperbolic tangent function”, Int. J. Numer. Mech. Fluids, 48 (2005), 1023–1040 | DOI | Zbl

[13] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion method for interface steepening in two-phase incompressible flow”, J. Comput. Phys., 230 (2011), 5155–5177 | DOI | MR | Zbl

[14] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion interface sharpening technique for two-phase compressible flow simulations”, J. Comput. Phys., 231 (2012), 4304–4323 | DOI | MR | Zbl

[15] Harten A., “The artificial compression method for computation of shocks and contact discontinuities, I: Single conservation laws”, Commun. Pure Appl. Math., 30 (1977), 611–638 | DOI | MR | Zbl

[16] Harten A., “The artificial compression method for computation of shocks and contact discontinuities, III: Self-adjusting hybrid schemes”, Math. Comput., 32 (1978), 363–389 | MR | Zbl