Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_4_a3, author = {D. V. Kulyamin and P. A. Ostanin and V. P. Dymnikov}, title = {Modelling of {Earth's} ionosphere {F} layer. {Solution} of the ambipolar diffusion equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {57--74}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/} }
TY - JOUR AU - D. V. Kulyamin AU - P. A. Ostanin AU - V. P. Dymnikov TI - Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations JO - Matematičeskoe modelirovanie PY - 2019 SP - 57 EP - 74 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/ LA - ru ID - MM_2019_31_4_a3 ER -
%0 Journal Article %A D. V. Kulyamin %A P. A. Ostanin %A V. P. Dymnikov %T Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations %J Matematičeskoe modelirovanie %D 2019 %P 57-74 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/ %G ru %F MM_2019_31_4_a3
D. V. Kulyamin; P. A. Ostanin; V. P. Dymnikov. Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 57-74. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/
[1] R. W. Schunk (ed.), Solar Terrestrial Energy Program (STEP): Handbook of Ionospheric Models, Center for Atmospheric and Space Sciences, Logan, UT, USA, 1996, 295 pp.
[2] R. W. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge University Press, 2009, 586 pp.
[3] A. D. Richmond, E. C. Ridley, R. G. Roble, “A Thermosphere/Ionosphere General Circulation Model with coupled electrodynamics”, Geophys. Res. Lett., 19:6 (1992), 601–604 | DOI
[4] T. J. Fuller-Rowell, M. V. Codrescu, B. G. Fejer, W. Borer, F. Marcos, D. N. Anderson, “Dynamics of the low-latitude thermosphere: Quiet and disturbed conditions”, J. Atmos. Terr. Phys., 59:13 (1997), 1533–1540 | DOI
[5] A. A. Namgaladze, O. V. Martynenko, M. A. Volkov, A. N. Namgaladze, R. Yu. Yurik, “Highlatitude version of the global numerical model of the Earth's upper atmosphere”, Proceedings of the MSTU, 1:2 (1998), 23–84
[6] F. S. Bessarab, Yu. N. Korenkov, V. V. Klimenko, M. V. Klimenko, Y. Zhang, “E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement”, Advances in Space Research, 55:8 (2015), 2124–2130 | DOI
[7] S. E. McDonald, F. Sassi, A. J. Mannucci, “SAMI3/SD-WACCM-X simulations of ionospheric variability during Northern winter 2009”, Space Weather, 13:9 (2015), 568–584 | DOI
[8] H. Wang, R. A. Akmaev, T.-W. Fang, T. J. Fuller-Rowell, F. Wu, N. Maruyama, M. D. Iredell, “First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA”, J. Geophys. Res. Space Physics, 119:3 (2014), 2079–2089 | DOI
[9] D. V. Kulyamin, V. P. Dymnikov, “A three-dimensional model of general thermospheric circulation”, Rus. J. of Num. Analys. and Math. Model., 28:4 (2014), 353–380 | MR
[10] D. V. Kulyamin, V. P. Dymnikov, “Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region”, Rus. J. of Num. Analys. and Math. Model., 31:3 (2016), 159–171 | MR | Zbl
[11] V. I. Agoshkov, Metody razdelenia oblasti v zadachakh gidrotermodinamiki okeanov i morey, INM RAS, M., 2017, 187 pp.
[12] P. A. Ostanin, D. V. Kulyamin, V. P. Dymnikov, “Numerical modelling of the Earth's ionosphere F region”, IOP Conf. Series: Earth and Environmental Science, 96:1 (2017), 012011, 11 pp. | DOI
[13] E. L. Kuznetsova, V. F. Formalen, “Ekonomichny polnostiu neiavny metod chislennogo reshenia parabolicheskikh uravnenii, soderzhashchykh smeshannye proizvodnye”, Vychislitelnye tekhnologii, 15:5 (2010), 72–80 | Zbl
[14] Y. Takeuchi, N. Adachi, H. Tokumafu, “The stability of generalized Volterra equations”, J. Math. Anal. Appl., 62:3 (1978), 453–473 | DOI | MR | Zbl
[15] S. A. Ishanov, S. V. Klevtsur, K. S. Latyshev, “Algoritm "$\alpha$-$\beta$" iteratsii v zadachakh modelirovaniia ionosfernoi plazmy”, Matem. modelirovanie, 21:1 (2009), 33–45 | Zbl
[16] Henk A. van der Vorst, Iterative Krylov Methods for Large Linear System, Cambridge University Press, 2003, 221 pp. | MR