Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations
Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 57-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the problem formulation and methods of numerical solution for the global dynamical model of Earth's ionosphere F layer (altitude 100–500 km), which is a computational unit of the coupled thermosphere-ionosphere model. The model is based on a set of equations of global ionospheric formation and dynamics in a spherical geomagnetic coordinate system in the approximation of a thin spherical layer. The features of the formulated equations are investigated and methods for its solution are proposed based on the splitting method. In this paper we present the results of the first stage of the splitting method — solution of equations describing the ambipolar diffusion along magnetic field lines and gravitational settling of ions as well as plasma chemical transformations. Based on the prescribed analytical solution, which qualitatively describes the real ionospheric electrons distribution, the accuracy of the proposed algorithms is investigated. We also presents the results of numerical study for the sensitivity of solution to perturbations of the ion flow at the upper boundary.
Keywords: ionosphere, numerical modelling, splitting method.
Mots-clés : ambipolar diffusion
@article{MM_2019_31_4_a3,
     author = {D. V. Kulyamin and P. A. Ostanin and V. P. Dymnikov},
     title = {Modelling of {Earth's} ionosphere {F} layer. {Solution} of the ambipolar diffusion equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--74},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/}
}
TY  - JOUR
AU  - D. V. Kulyamin
AU  - P. A. Ostanin
AU  - V. P. Dymnikov
TI  - Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 57
EP  - 74
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/
LA  - ru
ID  - MM_2019_31_4_a3
ER  - 
%0 Journal Article
%A D. V. Kulyamin
%A P. A. Ostanin
%A V. P. Dymnikov
%T Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations
%J Matematičeskoe modelirovanie
%D 2019
%P 57-74
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/
%G ru
%F MM_2019_31_4_a3
D. V. Kulyamin; P. A. Ostanin; V. P. Dymnikov. Modelling of Earth's ionosphere F layer. Solution of the ambipolar diffusion equations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 57-74. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a3/

[1] R. W. Schunk (ed.), Solar Terrestrial Energy Program (STEP): Handbook of Ionospheric Models, Center for Atmospheric and Space Sciences, Logan, UT, USA, 1996, 295 pp.

[2] R. W. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge University Press, 2009, 586 pp.

[3] A. D. Richmond, E. C. Ridley, R. G. Roble, “A Thermosphere/Ionosphere General Circulation Model with coupled electrodynamics”, Geophys. Res. Lett., 19:6 (1992), 601–604 | DOI

[4] T. J. Fuller-Rowell, M. V. Codrescu, B. G. Fejer, W. Borer, F. Marcos, D. N. Anderson, “Dynamics of the low-latitude thermosphere: Quiet and disturbed conditions”, J. Atmos. Terr. Phys., 59:13 (1997), 1533–1540 | DOI

[5] A. A. Namgaladze, O. V. Martynenko, M. A. Volkov, A. N. Namgaladze, R. Yu. Yurik, “Highlatitude version of the global numerical model of the Earth's upper atmosphere”, Proceedings of the MSTU, 1:2 (1998), 23–84

[6] F. S. Bessarab, Yu. N. Korenkov, V. V. Klimenko, M. V. Klimenko, Y. Zhang, “E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement”, Advances in Space Research, 55:8 (2015), 2124–2130 | DOI

[7] S. E. McDonald, F. Sassi, A. J. Mannucci, “SAMI3/SD-WACCM-X simulations of ionospheric variability during Northern winter 2009”, Space Weather, 13:9 (2015), 568–584 | DOI

[8] H. Wang, R. A. Akmaev, T.-W. Fang, T. J. Fuller-Rowell, F. Wu, N. Maruyama, M. D. Iredell, “First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA”, J. Geophys. Res. Space Physics, 119:3 (2014), 2079–2089 | DOI

[9] D. V. Kulyamin, V. P. Dymnikov, “A three-dimensional model of general thermospheric circulation”, Rus. J. of Num. Analys. and Math. Model., 28:4 (2014), 353–380 | MR

[10] D. V. Kulyamin, V. P. Dymnikov, “Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region”, Rus. J. of Num. Analys. and Math. Model., 31:3 (2016), 159–171 | MR | Zbl

[11] V. I. Agoshkov, Metody razdelenia oblasti v zadachakh gidrotermodinamiki okeanov i morey, INM RAS, M., 2017, 187 pp.

[12] P. A. Ostanin, D. V. Kulyamin, V. P. Dymnikov, “Numerical modelling of the Earth's ionosphere F region”, IOP Conf. Series: Earth and Environmental Science, 96:1 (2017), 012011, 11 pp. | DOI

[13] E. L. Kuznetsova, V. F. Formalen, “Ekonomichny polnostiu neiavny metod chislennogo reshenia parabolicheskikh uravnenii, soderzhashchykh smeshannye proizvodnye”, Vychislitelnye tekhnologii, 15:5 (2010), 72–80 | Zbl

[14] Y. Takeuchi, N. Adachi, H. Tokumafu, “The stability of generalized Volterra equations”, J. Math. Anal. Appl., 62:3 (1978), 453–473 | DOI | MR | Zbl

[15] S. A. Ishanov, S. V. Klevtsur, K. S. Latyshev, “Algoritm "$\alpha$-$\beta$" iteratsii v zadachakh modelirovaniia ionosfernoi plazmy”, Matem. modelirovanie, 21:1 (2009), 33–45 | Zbl

[16] Henk A. van der Vorst, Iterative Krylov Methods for Large Linear System, Cambridge University Press, 2003, 221 pp. | MR