The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)
Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 33-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the review article the papers with methods of fractured formations exploration seismology direct problems solution are considered. The fractured formations are the potential carbonate-containing collectors, which are studied actively at present time. Because of high cost of field exploration works the numerical simulation is the important part of such researches leading to decrease of financial and temporary spends. The papers of traditional modeling methods based on effective models are considered. Also, the significant part of article is about works with use of methods developed by authors to solve considered range of problems. These methods are based on use of grid-characteristic method on unstructured triangle (in 2D-case) and tetrahedral (in 3D-case) meshes. The grid-characteristic numerical method describes the dynamical processes in exploration seismology problems the most exactly, because it takes into consideration the nature of wave processes. The used approach lets to make the correct computational algorithms on boundaries and contact boundaries of integration area. The important part of this article is about different fracture models used in practice. Result of numerical simulation with use of developed methods from papers of the authors are also represented in the article, as the important practical conclusions based on them.
Keywords: review article, numerical simulation, grid-characteristic method, unstructured meshes, exploration seismology, fractured media.
@article{MM_2019_31_4_a2,
     author = {I. B. Petrov and M. V. Muratov},
     title = {The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--56},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_4_a2/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - M. V. Muratov
TI  - The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 33
EP  - 56
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_4_a2/
LA  - ru
ID  - MM_2019_31_4_a2
ER  - 
%0 Journal Article
%A I. B. Petrov
%A M. V. Muratov
%T The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)
%J Matematičeskoe modelirovanie
%D 2019
%P 33-56
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_4_a2/
%G ru
%F MM_2019_31_4_a2
I. B. Petrov; M. V. Muratov. The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article). Matematičeskoe modelirovanie, Tome 31 (2019) no. 4, pp. 33-56. http://geodesic.mathdoc.fr/item/MM_2019_31_4_a2/

[1] Dorofeeva E. V., Tektonicheskaia treshcinovatost' gornykh porod i usloviia formirovaniia treshcinnykh kollektorov nefti i gaza, Nedra, M., 1986, 231 pp.

[2] Kozlov E. A., Modeli sredy v razvedochnoj sejsmologii, GERS, Tver', 2006, 480 pp.

[3] Hadson J. A., “Effective-medium theories for fluid-saturated materials with aligned cracks”, Geophysical Prospecting, 49:5 (2001), 509–522 | DOI

[4] Coates R. T., Shoenberg M., “Finite-difference modeling of faults and fractures”, Geophysics, 60 (1995), 1514–1523 | DOI

[5] Grechka V., Kochanov M., “Effective elasticity of fractured rocks: A snapshot of progress”, Geophysics, 71:6 (2006), 45–58 | DOI

[6] Xu Y., Chapman M., Li X. Y., Main I. G., “Effects of Fracture Spacing on Seismic Wave Propagation: A 3D Numerical Simulation Study on Discrete Fracture Models”, 72 EAGE Conference (2010), 108

[7] Schoenberg M., “Elastic wave behavior across linear slip interfaces”, J. Acoust. Soc., 1980, 1516–1521 | DOI | Zbl

[8] Tomsen L., “Weak elastic anisotropy”, Geophysics, 51 (1986), 1954–1966 | DOI

[9] Bakulin A., Grechka V., Karaev N., Anisimov A., Kozlov E., “Physical modeling and theoretical studies of seismic reflections from a fault zone”, SEG, 2004, 1674–1677

[10] Nakagawa S., Nihei K. T., Myer L. R., “Numerical modeling of 3D elastic wave scattering off a layer containing parallel periodic fractures”, SEG, 2002, 1967–1970

[11] Masyukov A. V., Masyukov V. V., Shlenkin V. I., “Proverka znachimosti korrelyatsionnykh svyazei v geologo-geofizicheskom prognozirovanii”, Seismic Technologies, 2007, no. 1, 80–86

[12] Kozlov E. A., Baranskij N. L., Sementsov V. F., Aksenova N. A., “Razdelnoe izobrazhenie zerkalnykh i rasseivaiushcikh geologicheskikh ob'ektov po dannym 3D-sejsmorazvedki”, Tekhnologii sejsmorazvedki, 2004, no. 2, 4–16

[13] Kremlev A. N., Erokhin G. N., Starikov L. E., Zverev M. A., “Forecast of crack and cavernous reservoirs in carbonate, clay and magmatic rocks based on scattered seismic waves”, EAGE, 2008, 1–5

[14] Kuznetsov O. L., Kurianov Iu. A., Chirkin I. A., Shlenkin S. I., “Sejsmicheskij lokator bokovogo obzora”, Geofizika, 2004, spetsvypusk: 40 let Tiumenneftegeofizike, 17–22

[15] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp.

[16] Petrov I. B., Kholodov A. S., “Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method”, USSR Computational Mathematics and Mathematical Physics, 24:3 (1984), 61–73 | DOI | MR | Zbl | Zbl

[17] Petrov I. B., Tormasov A. G., Kholodov A. S., “On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid”, USSR Computational Mathematics and Mathematical Physics, 30:4 (1990), 191–196 | DOI | MR | Zbl

[18] Goldin S. V., Vvedenie v geometricheskuyu seismiku, Novosibirskii Gosudarstvennyi Universitet, Novosibirsk, 2005, 264 pp.

[19] Shevchenko A. A., Seismicheskie issledovaniya v skvazhinakh, MGU, geologicheskii fakultet, kafedra seismometrii i geoakustiki, M., 2007, 136 pp.

[20] Alekseev A. S., Gelchinskij B. Ia., “O luchevom metode vychisleniia polej voln v sluchae neodnorodnykh sred s krivolinejnymi granitsami razreza”, Voprosy dinamicheskoj teorii rasprostraneniia sejsmicheskikh voln, 3, Izd-vo LGU, L., 1959, 107–116

[21] Gassmann F., “Elastic waves through a packing of spheres”, Geophysics, 16:4 (1951), 673–685 | DOI | MR

[22] Raymer L. L., “An improved sonic transit time-to-porosity transform”, SPWLA 21$^{\mathrm{st}}$ Ann. Logging Symp. (1980), 1–12 | MR

[23] Gardner G. H. F., Canning A., “AVA analysis after velocity-independent DMO and imaging”, Geophysics, 63:20 (1998), 686–691 | DOI

[24] Ursenbach C. P., “Generalized Gardner relations”, 72$^{\mathrm{nd}}$ Annual International Meeting, SEG, Extanded Abstracts, 2002, 1885–1888

[25] Frenher M., Schmalholz S. M., “Finite-element simulation of Stoneley guided-wave reflection and scattering at the tips of fluid-filled fractures”, Geophysics, 5:2 (2010), T23–T36 | DOI

[26] Kosloff D., Baysal E., “Forward modeling by a Fourier method”, Geophysics, 47:10 (1982), 1402–1412 | DOI

[27] Priolo E., Carcione J. M., Seriani G., “Numerical simulation of interface waves by highorder spectral modeling techniques”, J. Acoust. Soc. Am., 95 (1994), 681–693 | DOI

[28] Hesthaven J. S., Warburton T., Nodal discontinuous Galerkin methods: algoths, analysis, and applications, Texts in Applied Mathematics, 54, Springer, 2008 | DOI | MR

[29] Novatskij V. K., Teoriia uprugosti, Mir, M., 1975, 872 pp.

[30] Muratov M. V., Petrov I. B., “Estimation of wave responses from subvertical macrofracture systems using a grid characteristic method”, MM, 5:5 (2013), 479–491 | MR | Zbl

[31] Biryukov V. A., Muratov M. V., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers”, Computational Mathematics and Mathematical Physics, 55:10 (2015), 1733–1742 | DOI | MR | Zbl

[32] Leviant V. B., Petrov I. B., Kvasov I. E., “Numerical modeling of seismic response from subvertical macrofractures as possible fluid conduits”, Seismic Technol., 2011, no. 4, 41–61

[33] Leviant V. B., Miriakha V. A., Muratov M. V., Petrov I. B., “Seismic responses of vertical fractures depending on their thickness”, Seismic Technologies, 2015, no. 3, 16–30

[34] Korneev V., “Low-frequency fluid waves in fractures and pipes”, Geophysics, 75:6 (2010), N97–N107 | DOI

[35] Lisitsa V. V., Pozdniakov V. A., Reshetova G. V., Khajdukov V. G., Cheverda V. A., Shilikov V. V., “Scattered seismic responses: simulation and imaging. P. 1. Two-dimensional media”, Seismic Technologies, 2013, no. 1, 46–58

[36] Leviant V. B., Petrov I. B., Muratov M. V., “Numerical simulation of wave responses from subvertical macrofractures system”, Seismic Technologies, 2012, no. 1, 5–21

[37] Leviant V. B., Petrov I. B., Muratov M. V., Byko S. A., “Stability of P-to-S scattering off a system of fractures”, Seismic Technologies, 2013, no. 1, 32–45

[38] Karaev N. A., Leviant V. B., Petrov I. B., Karaev G. N., Muratov M. V., “Detection and characterization of fracture system's from P-to-S scattering: potentiality checks by physical modelling and simulations”, Seismic Technologies, 2015, no. 1, 22–36

[39] Muratov M. V., Petrov I. B., Kvasov I. E., “Numerical solution of exploration seismology problems in areas of fractures reservoirs”, Matem. Mod., 28:7 (2016), 31–44 | Zbl

[40] Leviant V. B., Petrov I. B., Chelnokov F. B., “Nature of the scattered seismic response from zones of random clusters of cavities and fractures in a massive rock”, Geophysical Prospecting, 55:4 (2007), 507–524 | DOI

[41] Leviant V. B., Petrov I. B., Pankratov S. A., “Issledovanie kharakteristik prodol'nykh i obmennykh voln otklika obratnogo rasseianiia ot zon treshcinovatogo kollektora”, Tekhnologii sejsmorazvedki, 2009, no. 2

[42] Favorskaia A. V., Beklemysheva K. A., Petrov I. B., “Chislennoe modelirovanie protsessov v tverdykh deformiruemykh sredakh pri nalichii dinamicheskikh kontaktov s pomoshciu setochno-kharakteristicheskogo metoda”, Trudy MFTI, 5:3 (19) (2013), 3–10

[43] Karaev N. A., Lukashin Iu. P., Prokator O. M., Semenov V. P., “Fizicheskoe modelirovanie treshcinovatykh sred”, Tekhnologii sejsmorazvedki, 2008, no. 2, 64–73