The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen
Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 109-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of "parasite-host" with two different infectious agents with a full cross-protection, and one of the options may vary in other. this system corresponds to the epidemic process of pathogen infectious agent having antibiotic-persistent option. the character of the behavior of solutions was studied. it is proved that the main case is a unique non-trivial steady-state solution, which is a global attractor. for small deviations obtained exponential speed reduction ratio deviations morbidity two options.
Keywords: host-parasite system, mathematical models in epidemiology, epidemic process model, antibiotic-resistant variants of the pathogen.
@article{MM_2019_31_3_a7,
     author = {A. N. Gerasimov},
     title = {The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--123},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_3_a7/}
}
TY  - JOUR
AU  - A. N. Gerasimov
TI  - The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 109
EP  - 123
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_3_a7/
LA  - ru
ID  - MM_2019_31_3_a7
ER  - 
%0 Journal Article
%A A. N. Gerasimov
%T The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen
%J Matematičeskoe modelirovanie
%D 2019
%P 109-123
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_3_a7/
%G ru
%F MM_2019_31_3_a7
A. N. Gerasimov. The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen. Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 109-123. http://geodesic.mathdoc.fr/item/MM_2019_31_3_a7/

[1] Briko N. I., Mindlina A. Ia., Polibin R. V., Sokolova T. V., Tsapkova N. N., “Na peredovykh rubezhakh epidemiologii (k 85-letiiu kafedry epidemiologii i dokazatelnoj meditsiny Pervogo MGMU im. I.M. Sechenova)”, Sechenovskij vestnik, 2016, no. 1(23), 4–12

[2] Avilov K. K., Romaniukha A. A., “Matematicheskie modeli rasprostraneniia i kontrolia tuberkuleza (obzor)”, Matem. Biologiia i Bioinform., 2:2 (2007), 188–318 | DOI

[3] Nosova E. A., Romaniukha A. A., “Mathematical Model of HIV-Infection Transmission and Dynamics in the Size of Risk Groups”, MM, 5:4 (2013), 379–393

[4] Moreno V., Espinoza B., Barley K., Paredes M., Bichara D., Mubayi A., Castillo-Chavez C., “The role of mobility and health disparities on the transmission dynamics of Tuberculosis”, Theor. Biol. Med. Model., 14:1 (2017) | DOI | Zbl

[5] Bornstein K., Hungerford L., Hartley D., Sorkin J. D., Tapia M. D., Sow S. O., Onwuchekwa U., Simon R., Tennant S. M., Levine M. M., “Modeling the Potential for Vaccination to Diminish the Burden of Invasive Non-typhoidal Salmonella Disease in Young Children in Mali, West Africa”, PLoS Negl Trop Dis., 11:2 (2017) | DOI | Zbl

[6] McBryde E. S., Meehan M. T., Doan T. N., Ragonnet R., Marais B. J., Guernier V., Trauer J. M., “The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains”, Int. J. Infect Dis., 56 (2017), 14–20 | DOI

[7] Gerasimov A. N., Razzhevaikin V. N., “Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate”, Comp. Math. Math. Phys., 48:8 (2008), 1406–1417 | DOI | MR | Zbl

[8] Anderson R. M., May R. M., Infectious disease of humans and control, Oxford University Press, Oxford, 1991