Increase of efficiency of systems of modeling electronic circuits in the frequency domain
Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 69-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods of constructing mathematical models for the automation of circuit design are considered, in the process of which the calculation of the parameters and the structure of the circuit connections of the components of the developed electronic device, displayed by its graphic scheme, is realized. It is noted that among many problems of circuit design one of the main ones is modeling the frequency properties of electronic circuits in a certain frequency range, within which a multiple calculation of the frequency characteristics of the circuit is performed in order to determine the admissible or optimal values of the parameters of the components used in the designed electronic circuit. It is shown that two approaches to the solution of such a problem are possible. The first approach is based on the description of the simulated circuit by complex matrices at each frequency $f [kf]$ of a given frequency range with a preliminary calculation of the operator $s = (0.0, 2 * 3.14 * f [kf])$. A significant drawback of this approach is the need to form a mathematical description of all circuit components at each frequency. The second approach to solving the problem is based on the representation of the complex matrix of the scheme in the bilinear form $W = A + sB$, where $A$ and $B$ are real frequency-independent matrices. It is shown that the implementation of such an approach in a number of cases requires the presentation of the equations of frequency-dependent components in explicit form, which is permissible only when describing the scheme in coordinate bases for which this possibility is provided. A technique is proposed for describing simulated circuits in a modified basis of nodal potentials, which makes it possible to use both an explicit and an implicit form for specifying the component equations. It is shown that the bilinear form of the circuit description based on the modified basis significantly improves the efficiency of calculating the frequency characteristics, since at each frequency the invariant frequencyindependent matrix components of the circuit are used.
Keywords: systems for automation of circuit design, system modeling, bilinear form, modified basis of nodal potentials.
@article{MM_2019_31_3_a4,
     author = {V. N. Gridin and V. I. Anisimov},
     title = {Increase of efficiency of systems of modeling electronic circuits in the frequency domain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_3_a4/}
}
TY  - JOUR
AU  - V. N. Gridin
AU  - V. I. Anisimov
TI  - Increase of efficiency of systems of modeling electronic circuits in the frequency domain
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 69
EP  - 82
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_3_a4/
LA  - ru
ID  - MM_2019_31_3_a4
ER  - 
%0 Journal Article
%A V. N. Gridin
%A V. I. Anisimov
%T Increase of efficiency of systems of modeling electronic circuits in the frequency domain
%J Matematičeskoe modelirovanie
%D 2019
%P 69-82
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_3_a4/
%G ru
%F MM_2019_31_3_a4
V. N. Gridin; V. I. Anisimov. Increase of efficiency of systems of modeling electronic circuits in the frequency domain. Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 69-82. http://geodesic.mathdoc.fr/item/MM_2019_31_3_a4/

[1] V.P. Sigorskij, A.I. Petrenko, Algoritmy analiza elektronnykh skhem, Sov. radio, M., 1976, 608 pp.

[2] I.P. Norenkov, Vvedenie v avtomatizirovannoe proektirovanie tekhnicheskikh ustroistv i sistem, Vysshaia shkola, M., 1986, 304 pp.

[3] B.A. Kalabekov, I. Yu. Lapidus, V.M. Malafeev, Metody avtomatizirovannogo rascheta elektronnyh skhem v tekhnike sviazi, Radio i sviaz, M., 1990, 272 pp.

[4] B.V. Batalov, Yu.B. Egorov, S.G. Rusakov, Osnovy matematicheskogo modelirovaniia bolshikh integralnykh skhem na EVM, Radio i sviaz, M., 1982, 168 pp.

[5] E.L. Gloriozov, V.K. Ssorin, P.P. Sypchuk, Vvedenie v avtomatizaciiu skhemotekhnicheskogo proektirovaniia, Sovetskoe radio, M., 1976, 224 pp.

[6] A.I. Petrenko, O.I. Semenkov, Osnovy postroeniia sistem avtomatizirovannogo proektirovaniia, Vysshaia shkola, Kiev, 1984, 293 pp.

[7] G. Forsyte, M. Malkolm, C. Moler, Computer methods for mathematical computation, Prentige Hall, N.J., 1977 | MR

[8] O. Osterby, Z. Zlatev, Direct methods for sparse matrices, Springer Verlag, New York, 1983 | MR | Zbl

[9] N.F. Il'inskij, V.K. Cacenkin, Prilozhenie teorii grafov k zadacham elektromekhaniki, Energiia, M., 1968, 200 pp.

[10] L. Robichaud, M. Boisvert, J. Roert, Graphes de fluense. Applications a l'electrotechnique et a l'electronique, Canade, 1961

[11] G. Kron, Diacoptics, Macdonald, London, 1970

[12] Yu.V. Timkin, Analiz elektronnykh skhem metodom dvunapravlennykh grafov, Energoatomizdat, M., 1985, 255 pp.

[13] V.N. Il'in, Osnovy avtomatizatsii skhemotekhnicheskogo proektirovaniia, Energiia, M., 1979, 391 pp.

[14] I.P. Norenkov, V.B. Manichev, Sistemy avtomatizirovannogo proektirovaniia elektronnoi i vychislitelnoi apparatury, Vysshaia shkola, M., 1983, 273 pp.

[15] Y. Vlach, K. Singhal, Computer methods for circuit analysis and design, VNR Company, New York, 1983

[16] L. Chua, Pen-Min Lin, Computer-aided analysis of electronic circuits, Prentice Hall, New York, 1980

[17] J. Fidler, C. Nightingale, Computer Aided Circuit Design, John Wiley Sons, New York, 1980

[18] G.V. Obrezkov i dr., Prikladnye matematicheskie metody analiza v radiotekhnike, Vysshaia shkola, M., 1985, 343 pp.

[19] A. Troelsen, PRO C#2005 and the.NET 2.0 Platform, Apress@, 2005

[20] V.N. Gridin, N.G. Ryzhov, V.I. Anisimov, M.M. Abuhazim, “Metody povysheniia effektivnosti processov modelirovaniia dinamicheskikh rezhimov nelineinykh sistem”, Informatsionnye tekhnologii, 2017, no. 11, 796–802