Analytical investigation of massive particles dynamics in Kruskal metric
Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the dynamics of a single massive particle and a system of massive particles are considered in the Kruskal metric, which is the maximum analytic extension of the Hilbert metric to a gravitating point in a vacuum.
Keywords: Lagrangian, Kruskal–Szekeres metric, maximal analytical extension, singularity of dynamics, Hessian.
@article{MM_2019_31_3_a3,
     author = {N. N. Fimin and Yu. N. Orlov and V. M. Chechetkin},
     title = {Analytical investigation of massive particles dynamics in {Kruskal} metric},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_3_a3/}
}
TY  - JOUR
AU  - N. N. Fimin
AU  - Yu. N. Orlov
AU  - V. M. Chechetkin
TI  - Analytical investigation of massive particles dynamics in Kruskal metric
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 55
EP  - 68
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_3_a3/
LA  - ru
ID  - MM_2019_31_3_a3
ER  - 
%0 Journal Article
%A N. N. Fimin
%A Yu. N. Orlov
%A V. M. Chechetkin
%T Analytical investigation of massive particles dynamics in Kruskal metric
%J Matematičeskoe modelirovanie
%D 2019
%P 55-68
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_3_a3/
%G ru
%F MM_2019_31_3_a3
N. N. Fimin; Yu. N. Orlov; V. M. Chechetkin. Analytical investigation of massive particles dynamics in Kruskal metric. Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 55-68. http://geodesic.mathdoc.fr/item/MM_2019_31_3_a3/

[1] Kruskal M. D., “Maximal extension of Schwarzschild metric”, Phys. Rev., 119 (1960), 1743 | DOI | MR | Zbl

[2] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W.H. Freeman Comp., San Francisco, 1973 | MR

[3] Abrams L. S., “Black holes: the legacy of Hilbert's error”, Can. J. Phys., 67 (1989), 919 | DOI | MR | Zbl

[4] Crothers S. J., “Gravitation on a spherical symmetric metric manifold”, Progr. in Physics, 2 (2007), 68 | MR

[5] Hilbert D., “Gravitationsfield eines Massenpunktes”, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 53 (1917) (submitted 23 Dec. 1916) | Zbl

[6] Schwarzschild K., “Über das Gravitationsfield eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys. Math. Klasse, 1916, 189–196 | Zbl

[7] Vlasov A. A., Statistical distribution functions, Nauka, M., 1966

[8] Wald R. M., General relativity, The University of Chicago Press, Chicago–London, 1984 | MR | Zbl

[9] McVittie G. C., General relativity and cosmology, Chapman and Hall Ltd., London, 1956 | MR

[10] Ryder L., Introduction to general relativity, Cambridge University Press, N.Y., 2009 | MR | Zbl

[11] De Groot S. R., van Leeuwen W. A., van Weert Ch. G., Relativistic kinetic theory: principles and applications, Elsevier North Holland, Amsterdam–New York, 1980 | MR

[12] Gaida R. P., Tretyak V. I., “Single-time form of the Fokker-type relativistic dynamics”, Acta Phys. Polon., Ser. B, 11:7 (1980), 509–522

[13] V.M. Chechetkin, S.L. Ginzburg, V.F. Dyachenko, Yu.N. Orlov, N.N. Fimin, “Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field”, Comput. Math. Math. Phys., 56:9 (2016), 1611–1619 | DOI | MR | Zbl

[14] Choquet-Bruhat Y., General relativity and Einstein's equations, Oxford University Press, Oxford–New York, 2009 | MR