About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions
Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theoretical analysis of a model of two-phase medium which takes into account chaotic motion and collisions of particles for the description of shock-wave processes in dense gas particle suspensions is presented. Domains of hyperbolicity or composite type of the governing system of equations are determined. The expansion of the hyperbolicity zones with respect to the collisionless model is shown. An approximate hyperbolized model is presented, and comparative analysis of numerical solutions of the problem of the formation of shock-wave structures of various types is performed. The convergence properties in numerical simulations of non-conservative equations of composite type with the use of monotonizing schemes of Harten and Gentry–Martin–Daly are established. Conditions for the applicability of a hyperbolized model for different types of flows are obtained. They indicate that in general it is advisable to analyze the shock-wave processes in gas particle suspensions within the framework of the full model.
Mots-clés : gas suspension
Keywords: shock waves, collision model, characteristic analysis, mathematical modeling, numerical simulation.
@article{MM_2019_31_3_a0,
     author = {A. V. Fedorov and T. A. Khmel},
     title = {About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_3_a0/}
}
TY  - JOUR
AU  - A. V. Fedorov
AU  - T. A. Khmel
TI  - About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 22
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_3_a0/
LA  - ru
ID  - MM_2019_31_3_a0
ER  - 
%0 Journal Article
%A A. V. Fedorov
%A T. A. Khmel
%T About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions
%J Matematičeskoe modelirovanie
%D 2019
%P 3-22
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_3_a0/
%G ru
%F MM_2019_31_3_a0
A. V. Fedorov; T. A. Khmel. About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions. Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2019_31_3_a0/

[1] Kh.A. Rakhamulin, “Osnovy gasodinamiki vzaimopronikaiushchikh dvizhenii szhimaemykh sred”, PMM, 20:2 (1956), 184–195

[2] R.I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[3] V.N. Nikolaevskii, “Hydrodynamic analysis of shock adiabats of heterogeneous mixtures of substances”, Journal of Applied Mechanics and Technical Physics, 1969, no. 3, 407–411

[4] N.N. Ianenko, R.I. Soloukhin, A.N. Papyrin, V.M. Fomin, Sverkhzvukovye dvukhfaznye techeniia v usloviiakh skorostnoi neravnovesnosti chastits, Nauka, N., 1980, 160 pp.

[5] A.E. Medvedev, A.V. Fedorov, V.M. Fomin, “Description of ignition and combustion of gas mixtures with solid particles by methods of the mechanics of continuous media”, Combustion, Explosion and Shock Waves, 20 (1984), 127–133 | DOI

[6] M.R. Baer, J.W. Nunziato, “A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials”, Int. Journal of Multiphase flow, 12 (1986), 861–889 | DOI | Zbl

[7] A.V. Fedorov, “Matematicheskoe opisanie techeniia smesi kondensirovannykh materialov pri vysokikh davleniiakh”, Fizicheskaia gazodinamika reagiruiushchikh sred, Nauka, Novosibirsk, 1990, 119–128

[8] J.M. Powers, D.S. Stewart, H. Krier, “Theory of two-phase detonation - Part I: Modelling”, Combustion and Flame, 80 (1990), 264–279 | DOI

[9] K.A. Gonthier, J.M. Powers, “A numerical investigation of transient detonation in granulated material”, Shock Waves, 6 (1996), 183–195 | DOI | Zbl

[10] S. Xu, D.S. Stewart, “Deflagration-to-detonation transition in porous energetic materials: A comparative model study”, Journal of Engineering Mathematics, 31 (1997), 143–172 | DOI | Zbl

[11] J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila, D.S. Stewart, “Two-phase modeling of DDT in granular materials: A critical examination of modeling issues”, Physics of Fluids, 1999, no. 11, 378–402 | DOI | MR | Zbl

[12] A.V. Fedorov, “Struktura udarnoi volny v smesi dvukh tverdykh tel”, Modelirovanie v mekhanike, 5(22):4 (1991), 135-158 | Zbl

[13] E.V. Varlamov, A.V. Fedorov, “Begushchaia volna v neizotermicheskoi smesi tverdykh tel”, Modelirovanie v mekhanike, 5 (22):3 (1991), 14–26 | Zbl

[14] A.V. Fedorov, N.N. Fedorova, “Structure, propagation, and reflection of shock waves in a mixture of solids (the hydrodynamic approximation)”, Journal of Applied Mechanics and Technical Physics, 33:4 (1992), 487–494 | DOI | MR

[15] A.V. Fedorov, A.A. Zhilin, “The shock-wave structure in a two-velocity mixture of compressible media with different pressures”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 166–174 | DOI | MR | Zbl

[16] A.A. Zhilin, A.V. Fedorov, “Propagation of shock waves in a two-phase mixture with different pressures of the components”, Journal of Applied Mechanics and Technical Physics, 40:1 (1999), 46–53 | DOI | MR | Zbl

[17] A.G. Kutushev, D.A. Rudakov, “Numerical investigation of the parameters of the air shocks associated with the expansion of a powder layer”, Combustion, Explosion and Shock Waves, 28:6 (1992), 670–676 | DOI

[18] A.G. Kutushev, Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh, Nedra, Sankt-Peterburg, 2003, 283 pp.

[19] A.A. Gubaidullin, A. Britain, D.N. Dudko, “Air shock wave interaction with an obstacle covered by porous material”, Shock Waves, 13 (2003), 41–48 | DOI | Zbl

[20] M.A. Gol'dshtik, “Elementary theory of the boiling layer”, Journal of Applied Mechanics and Technical Physics, 1972, no. 6, 851–856 | DOI

[21] M.A. Gol'dshtik, B.N. Kozlov, “Elementary theory of concentrated dispersed systems”, Journal of Applied Mechanics and Technical Physics, 1973, no. 4, 851–856

[22] A.V. Fedorov, “Structure of a combination discontinuity in gas suspensions in the presence of random pressure from particles”, Journal of Applied Mechanics and Technical Physics, 1992, no. 5, 851–856 | MR

[23] A.V. Fedorov, T.A. Khmel, “Description of Shock Wave Processes in Gas Suspensions Using the Molecular-Kinetic Collisional Model”, Heat Transfer Research, 43:2 (2012), 95–107 | DOI

[24] T.A. Khmel', A.V. Fedorov, “Description of dynamic processes in two-phase colliding media with the use of molecular-kinetic approaches”, Combustion, Explosion and Shock Waves, 38:2 (2014), 196–207 | DOI

[25] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, Boston, 1994, 467 pp. | MR | Zbl

[26] A. Goldshtein, M. Shapiro, “Mechanics of collisional motion of granular materials. Part I. General hydrodynamics equations”, J. Fluid Mechanics, 282 (1995), 75–114 | DOI | MR | Zbl

[27] A. Goldshtein, M. Shapiro, C. Gutfinger, “Mechanics of collisional motion of granular materials. Part 3. Self-similar shock wave propagation”, J. Fluid Mechanics, 316 (1996), 29–51 | DOI | MR | Zbl

[28] B.E. Gel'fand, S.P. Medvedev, A.N. Polenov, E.I. Timofeev, S.M. Frolov, S.A. Tsyganov, “Measurement of the velocity of weak disturbances of bulk density in porous media”, Journal of Applied Mechanics and Technical Physics, 27:5 (1986), 127–130 | DOI

[29] T.A. Khmel', A.V. Fedorov, “Modeling of propagation of shock and detonation waves in dusty media with allowance for particle collisions”, Combustion, Explosion and Shock Waves, 50:5 (2014), 196–207 | DOI

[30] T.A. Khmel, A.V. Fedorov, “Numerical simulation of dust dispersion using molecular-kinetic model for description of particle-to-particle collisions”, Journal of Loss Prevention in the Process Industries, 36 (2015), 223–229 | DOI

[31] T.A. Khmel, A.V. Fedorov, “Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension”, Combustion, Explosion and Shock Waves, 53:4 (2017), 444–452 | DOI | MR | Zbl

[32] T.A. Khmel, A.V. Fedorov, “Numerical study of dispersion of a rough dense layer of particles under the action of an expanding shock wave”, Combustion, Explosion and Shock Waves, 53:6 (2017), 696–704 | DOI

[33] T.A. Khmel, A.V. Fedorov, “Chislennye tekhnologii issledovaniia geterogennoi detonatsii gazovzvesei”, Matem. Modelirovanie, 18:8 (2006), 49–63

[34] V.F. Kuropatenko, “Momentum and energy exchange in nonequilibrium multicomponent media”, Journal of Applied Mechanics and Technical Physics, 46:1 (2005), 1–8 | DOI | Zbl

[35] V.F. Kuropatenko, “Mezomekhanika odnokomponentnykh i mnogokomponentnykh materialov”, Fizicheskaia mezomekhanika, 4:3 (2001), 49–55

[36] A.I. Ivandaev, A.G. Kutushev, D.A. Rudakov, “Numerical investigation of throwing a powder layer by a compressed gas”, Combustion, Explosion and Shock Waves, 31:4 (1995), 459–465 | DOI

[37] A.N. Kraiko, L.E. Sternin, “Theory of flows of a two-velocity continuous medium containing solid or liquid particles”, Journal of Applied Mathematics and Mechanics, 29:3 (1965), 482–496 | DOI | MR

[38] S.P. Kiselev, G.A. Ruev, A.I. Trunev, V.M. Fomin, M.Sh. Shavaliev, Udarno-volnovye protsessy v dvukhkomponentnykh i dvukhfaznykh sredakh, Nauka, Novosibirsk, 1992, 261 pp.

[39] Iu.V. Kazakov, Chislennoe modelirovanie rasprostraneniia voln razrezheniia i detonatsii v gazovzvesiakh, Diss. na soiskanie uch. stepeni kand. fiz.- mat. nauk, Novosibirsk–Krasnoiarsk, 1989, 167 pp.

[40] I.A. Bedarev, A.V. Fedorov, “Struktura i ustoichivost udarnoi volny v gazovzvesi s dvumia davleniiami”, Vychislitelnye tekhnologii, 20:2 (2015), 3–19

[41] A.V. Fedorov, I.A. Bedarev, “The Shok-Wave Strukture in a Gas-Mixture with Chaotic Pressure”, Mathematical Models and Computer Simulations, 10:1 (2018), 1–14 | DOI | MR