Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_2_a4, author = {S. V. Bogomolov and A. E. Kuvshinnikov}, title = {Discontinuous particles method on gas dynamic examples}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {63--77}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/} }
S. V. Bogomolov; A. E. Kuvshinnikov. Discontinuous particles method on gas dynamic examples. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 63-77. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/
[1] F.H. Harlow, “The Particle-in-Cell Computing Method for Fluid Dynamics”, Methods in Computational Physics, v. 3, eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, New York, 1964 | MR
[2] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill, 1981
[3] Yu.S. Sigov, Computing Experiment: The Bridge between the Past and Future of Plasma Physics, Fizmatlit, M., 2001
[4] M.F. Ivanov, V.A. Gal'burt, Chislennoe modelirovanie dinamiki gazov i plazmy metodom chastits, MFTI, M., 2000
[5] S.V. Bogomolov, K.V. Kuznetsov, “Particle method for system of gas dynamics equations”, Matematicheskoe modelirovanie, 10:7 (1998), 93–100 | MR | Zbl
[6] S.V. Bogomolov, E.V. Zakharov, S.V. Zerkal, “The shallow water wave simulating by particle method”, Matematicheskoe modelirovanie, 14:3 (2002), 103–116 | Zbl
[7] S.V. Bogomolov, “Particle method. Incompressible fluid”, Matematicheskoe modelirovanie, 15:1 (2003), 46–58 | Zbl
[8] S.V. Bogomolov, D.S. Zvenkov, “Explicit particle method, non-smoothing gas-dynamic discontinuities”, Matematicheskoe modelirovanie, 19:3 (2007), 74–86 | Zbl
[9] A.Zh. Bayev, S.V. Bogomolov, “On the stability of the discontinuous particle method for the transfer equation”, Math. Models and Computer Simulations, 10:2 (2018), 186–197 | DOI | MR
[10] C. Jiang, C. Schroeder, A. Selle et al., “The affine particle-in-cell method”, ACM Trans. Graph, 34:4 (2015), 51:1–51:10
[11] C. Jiang, C. Schroeder, J. Teran, “An angular momentum conserving affine-particle-in-cell method”, Journal of Computational Physics, 338 (2017), 137–164 | DOI | MR
[12] C. Fu, Q. Guo, T. Gast et al., “A polynomial particle-in-cell method”, ACM Trans. Graph, 36:6 (2017), 222:1–222:12
[13] L.B. Lucy, “A numerical approach to the testing of the fission hypothesis”, Astronomical Journal, 82 (1977), 1013–1024 | DOI
[14] R.A. Gingold, J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181:3 (1977), 375–389 | DOI | MR | Zbl
[15] G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, 2003 | Zbl
[16] SPHysics, https://wiki.manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page
[17] PySPH, https://github.com/pypr/pysph
[18] GPUSPH, http://www.gpusph.org/
[19] S.R. Idelsohn, E. Onate, F. Del Pin, “The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves”, International Journal for Numerical Methods in Engineering, 61:7 (2004), 964–989 | DOI | MR | Zbl
[20] S. R. Idelsohn, N. Nigro, A. Limache, E. Onate, “Large time-step explicit integration method for solving problems with dominant convection”, Computer Methods in Applied Mechanics and Engineering, 217–220 (2012), 168–185 | DOI | MR | Zbl
[21] S. R. Idelsohn, E. Onate, N. Nigro et al., “Lagrangian versus Eulerian integration errors”, Computer Methods in Applied Mechanics and Engineering, 293 (2015), 191–206 | DOI | MR
[22] E. Onate, S.R. Idelsoh, F. Del Pin, R. Aubry, “The particle finite element method — an overview”, International Journal of Computational Methods, 01:02 (2004), 267–307 | DOI | MR
[23] D. Hietel, K. Steiner, J. Struckmeier, “A finite volume particle method for compressible flows”, Math. Models and Methods in Applied Sciences, 10:9 (2000), 1363–1382 | DOI | MR
[24] D. Hietel, M. Junk, J. Kuhnert, S. Tiwari, “Meshless Methods for Conservation Laws”, Analysis and Numerics for Conservation Laws, Springer, Berlin–Heidelberg, 2005, 339–362 | DOI | MR | Zbl
[25] D. Teleaga, J. Struckmeier, “A finite-volume particle method for conservation laws on moving domains”, International J. for Numerical Methods in Fluids, 58:9 (2008), 945–967 | DOI | MR | Zbl
[26] N.V. Ardelyan, G.S. Bisnovatyi-Kogan, S.G. Moiseenko, “Simulation of magnetorotational astrophysical processes by implicit operator-difference scheme”, Lobachevskii Journal of Mathematics, 38:5 (2017), 874–879 | DOI | MR | Zbl
[27] S.K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, JPRS 7225, US Joint Publ. Res. Service, Nov. 29, 1960 | Zbl
[28] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc,, New York–Basel, 2001, 761 pp. | MR | Zbl
[29] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. on Scientific Computing, 25 (2003), 995–1017 | DOI | MR | Zbl
[30] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Micro-macro Kolmogorov-Fokker-Planck models for a hard-sphere gas”, Mathematical Models and Computer Simulations, 8:5 (2016), 533–547 | DOI | MR | Zbl
[31] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electronic beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI