Discontinuous particles method on gas dynamic examples
Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the features of the discontinuous particle method. The algorithmic fundamentals of the particle method are described in detail. The possibility of using limiters was investigated. The results of calculations for the Hopf, Burgers, shallow water and gas dynamics equations, including nonlinear acoustics, are presented. Numerical solutions are compared with some exact ones. Tests show that the method is well suited for problems with discontinuities. It is shown that in order to obtain a more accurate numerical solution, it is necessary to refine the initial mathematical models. Namely, if for the problem of the structure of the front of the shock wave instead of the Navier–Stokes equations to take the equations of stochastic gas dynamics, then the need for limiters disappears.
Keywords: particle method, meshless method, equations of stochastic gas dynamics, Navier–Stokes equations, Hopf equation, Burgers equation, shallow water equations.
@article{MM_2019_31_2_a4,
     author = {S. V. Bogomolov and A. E. Kuvshinnikov},
     title = {Discontinuous particles method on gas dynamic examples},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/}
}
TY  - JOUR
AU  - S. V. Bogomolov
AU  - A. E. Kuvshinnikov
TI  - Discontinuous particles method on gas dynamic examples
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 63
EP  - 77
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/
LA  - ru
ID  - MM_2019_31_2_a4
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%A A. E. Kuvshinnikov
%T Discontinuous particles method on gas dynamic examples
%J Matematičeskoe modelirovanie
%D 2019
%P 63-77
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/
%G ru
%F MM_2019_31_2_a4
S. V. Bogomolov; A. E. Kuvshinnikov. Discontinuous particles method on gas dynamic examples. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 63-77. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a4/

[1] F.H. Harlow, “The Particle-in-Cell Computing Method for Fluid Dynamics”, Methods in Computational Physics, v. 3, eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, New York, 1964 | MR

[2] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill, 1981

[3] Yu.S. Sigov, Computing Experiment: The Bridge between the Past and Future of Plasma Physics, Fizmatlit, M., 2001

[4] M.F. Ivanov, V.A. Gal'burt, Chislennoe modelirovanie dinamiki gazov i plazmy metodom chastits, MFTI, M., 2000

[5] S.V. Bogomolov, K.V. Kuznetsov, “Particle method for system of gas dynamics equations”, Matematicheskoe modelirovanie, 10:7 (1998), 93–100 | MR | Zbl

[6] S.V. Bogomolov, E.V. Zakharov, S.V. Zerkal, “The shallow water wave simulating by particle method”, Matematicheskoe modelirovanie, 14:3 (2002), 103–116 | Zbl

[7] S.V. Bogomolov, “Particle method. Incompressible fluid”, Matematicheskoe modelirovanie, 15:1 (2003), 46–58 | Zbl

[8] S.V. Bogomolov, D.S. Zvenkov, “Explicit particle method, non-smoothing gas-dynamic discontinuities”, Matematicheskoe modelirovanie, 19:3 (2007), 74–86 | Zbl

[9] A.Zh. Bayev, S.V. Bogomolov, “On the stability of the discontinuous particle method for the transfer equation”, Math. Models and Computer Simulations, 10:2 (2018), 186–197 | DOI | MR

[10] C. Jiang, C. Schroeder, A. Selle et al., “The affine particle-in-cell method”, ACM Trans. Graph, 34:4 (2015), 51:1–51:10

[11] C. Jiang, C. Schroeder, J. Teran, “An angular momentum conserving affine-particle-in-cell method”, Journal of Computational Physics, 338 (2017), 137–164 | DOI | MR

[12] C. Fu, Q. Guo, T. Gast et al., “A polynomial particle-in-cell method”, ACM Trans. Graph, 36:6 (2017), 222:1–222:12

[13] L.B. Lucy, “A numerical approach to the testing of the fission hypothesis”, Astronomical Journal, 82 (1977), 1013–1024 | DOI

[14] R.A. Gingold, J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181:3 (1977), 375–389 | DOI | MR | Zbl

[15] G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, 2003 | Zbl

[16] SPHysics, https://wiki.manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page

[17] PySPH, https://github.com/pypr/pysph

[18] GPUSPH, http://www.gpusph.org/

[19] S.R. Idelsohn, E. Onate, F. Del Pin, “The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves”, International Journal for Numerical Methods in Engineering, 61:7 (2004), 964–989 | DOI | MR | Zbl

[20] S. R. Idelsohn, N. Nigro, A. Limache, E. Onate, “Large time-step explicit integration method for solving problems with dominant convection”, Computer Methods in Applied Mechanics and Engineering, 217–220 (2012), 168–185 | DOI | MR | Zbl

[21] S. R. Idelsohn, E. Onate, N. Nigro et al., “Lagrangian versus Eulerian integration errors”, Computer Methods in Applied Mechanics and Engineering, 293 (2015), 191–206 | DOI | MR

[22] E. Onate, S.R. Idelsoh, F. Del Pin, R. Aubry, “The particle finite element method — an overview”, International Journal of Computational Methods, 01:02 (2004), 267–307 | DOI | MR

[23] D. Hietel, K. Steiner, J. Struckmeier, “A finite volume particle method for compressible flows”, Math. Models and Methods in Applied Sciences, 10:9 (2000), 1363–1382 | DOI | MR

[24] D. Hietel, M. Junk, J. Kuhnert, S. Tiwari, “Meshless Methods for Conservation Laws”, Analysis and Numerics for Conservation Laws, Springer, Berlin–Heidelberg, 2005, 339–362 | DOI | MR | Zbl

[25] D. Teleaga, J. Struckmeier, “A finite-volume particle method for conservation laws on moving domains”, International J. for Numerical Methods in Fluids, 58:9 (2008), 945–967 | DOI | MR | Zbl

[26] N.V. Ardelyan, G.S. Bisnovatyi-Kogan, S.G. Moiseenko, “Simulation of magnetorotational astrophysical processes by implicit operator-difference scheme”, Lobachevskii Journal of Mathematics, 38:5 (2017), 874–879 | DOI | MR | Zbl

[27] S.K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, JPRS 7225, US Joint Publ. Res. Service, Nov. 29, 1960 | Zbl

[28] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc,, New York–Basel, 2001, 761 pp. | MR | Zbl

[29] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. on Scientific Computing, 25 (2003), 995–1017 | DOI | MR | Zbl

[30] S.V. Bogomolov, N.B. Esikova, A.E. Kuvshinnikov, “Micro-macro Kolmogorov-Fokker-Planck models for a hard-sphere gas”, Mathematical Models and Computer Simulations, 8:5 (2016), 533–547 | DOI | MR | Zbl

[31] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electronic beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI