Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation
Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 48-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The special features of the computer simulations of the radiation heat exchange calculations of spacecraft with specular-diffuse approximation of the nature of the surfaces reflection according to the algorithms, which realize the direct calculation of the radiation exchange factors by the Monte Carlo method, and to the algorithm of the author, which realizes calculation through the determination of semi total absorbed radiation exchange factors are considered. Effects of geometric model surfaces approximation method and calculation algorithm on fluxes and temperature results are shown.
Keywords: heat radiation, algorithm, specular-diffuse approximation, radiation exchange factors.
@article{MM_2019_31_2_a3,
     author = {D. K. Vinokurov},
     title = {Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--62},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/}
}
TY  - JOUR
AU  - D. K. Vinokurov
TI  - Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 48
EP  - 62
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/
LA  - ru
ID  - MM_2019_31_2_a3
ER  - 
%0 Journal Article
%A D. K. Vinokurov
%T Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation
%J Matematičeskoe modelirovanie
%D 2019
%P 48-62
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/
%G ru
%F MM_2019_31_2_a3
D. K. Vinokurov. Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 48-62. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/

[1] John R. Howell, M. Pinar Menguc, Robert Siegel, Thermal radiation heat transfer, 6th ed., CRC press, Taylor Francis Group, Boca Raton–London–New York, 2016, 970 pp.

[2] E.R.G. Eckert, E.M. Sparrow, “Radiative heat exchange between surfaces with specular reflection”, IJHMT, 3:1 (1961), 42–54 | DOI | MR

[3] S. Lucas, “Verification of RadCAD: Specular Capabilities”, Proceedings of the Eighth Annual Thermal and Fuids Analysis Workshop, 1997, 15 pp.

[4] L. Maricic Lina, A. Louis, “The Effect of Solar Specularity and Ray-Tracing Modeling in NX Thermal Solver on Thermal Analysis of SWOT Mission”, Thermal and Fluids Analysis Workshop Proceedings (Huntsville, August 21–25, 2017)

[5] J.R. Howell, “The Monte Carlo Method in Radiative Heat Transfer”, Journal of Heat Transfer, 120 (1998), 547–560 | DOI

[6] P. Vueghs, Innovative Ray Tracing Algorithms for Space Thermal Analysis, PhD thesis, University of Liege, 2009, 253 pp.

[7] I.M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973, 312 pp.

[8] P.P. Almazan, “Accuracy Control in Monte-Carlo Radiative Calculations”, Fifth Annual Thermal and Fluids Analysis Workshop, NASA Conferen. Publicat., 10122, 1993, 47–62

[9] D.K. Vinokurov, Programma rascheta uglovykh koeffitsientov izlucheniia i luchistykh potokov ot vneshnikh istochnikov izlucheniia v zerkalno-diffuznom priblizhenii metodom Monte-Karlo — VF_1M V2.0, Reg. No 4244, FAP RKT, 2016

[10] B. Gebhart, Heat transfer, McGrawHill Book Company, Inc., New York–Toronto–London, 1961, 454 pp.

[11] A.G. Blokh, Iu.A. Zhuravlev, L.N. Ryzhkov, Teploobmen izlucheniem, Energoatomizdat, M., 1991, 432 pp.

[12] E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Brooks/Cole Publ, Belmont, 1970

[13] D.K. Vinokurov, “Primenenie oblastei vzaimoobluchennosti pri raschete luchistogo teploobmena kosmicheskogo apparata slozhnoi formy”, Kosmonavtika i raketostroenie, 2017, no. 5(98), 93–103