Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_2_a3, author = {D. K. Vinokurov}, title = {Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {48--62}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/} }
TY - JOUR AU - D. K. Vinokurov TI - Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation JO - Matematičeskoe modelirovanie PY - 2019 SP - 48 EP - 62 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/ LA - ru ID - MM_2019_31_2_a3 ER -
%0 Journal Article %A D. K. Vinokurov %T Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation %J Matematičeskoe modelirovanie %D 2019 %P 48-62 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/ %G ru %F MM_2019_31_2_a3
D. K. Vinokurov. Special features of the computer simulations of radiation heat exchange of the spacecraft in specular-diffuse approximation. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 48-62. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a3/
[1] John R. Howell, M. Pinar Menguc, Robert Siegel, Thermal radiation heat transfer, 6th ed., CRC press, Taylor Francis Group, Boca Raton–London–New York, 2016, 970 pp.
[2] E.R.G. Eckert, E.M. Sparrow, “Radiative heat exchange between surfaces with specular reflection”, IJHMT, 3:1 (1961), 42–54 | DOI | MR
[3] S. Lucas, “Verification of RadCAD: Specular Capabilities”, Proceedings of the Eighth Annual Thermal and Fuids Analysis Workshop, 1997, 15 pp.
[4] L. Maricic Lina, A. Louis, “The Effect of Solar Specularity and Ray-Tracing Modeling in NX Thermal Solver on Thermal Analysis of SWOT Mission”, Thermal and Fluids Analysis Workshop Proceedings (Huntsville, August 21–25, 2017)
[5] J.R. Howell, “The Monte Carlo Method in Radiative Heat Transfer”, Journal of Heat Transfer, 120 (1998), 547–560 | DOI
[6] P. Vueghs, Innovative Ray Tracing Algorithms for Space Thermal Analysis, PhD thesis, University of Liege, 2009, 253 pp.
[7] I.M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973, 312 pp.
[8] P.P. Almazan, “Accuracy Control in Monte-Carlo Radiative Calculations”, Fifth Annual Thermal and Fluids Analysis Workshop, NASA Conferen. Publicat., 10122, 1993, 47–62
[9] D.K. Vinokurov, Programma rascheta uglovykh koeffitsientov izlucheniia i luchistykh potokov ot vneshnikh istochnikov izlucheniia v zerkalno-diffuznom priblizhenii metodom Monte-Karlo — VF_1M V2.0, Reg. No 4244, FAP RKT, 2016
[10] B. Gebhart, Heat transfer, McGrawHill Book Company, Inc., New York–Toronto–London, 1961, 454 pp.
[11] A.G. Blokh, Iu.A. Zhuravlev, L.N. Ryzhkov, Teploobmen izlucheniem, Energoatomizdat, M., 1991, 432 pp.
[12] E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Brooks/Cole Publ, Belmont, 1970
[13] D.K. Vinokurov, “Primenenie oblastei vzaimoobluchennosti pri raschete luchistogo teploobmena kosmicheskogo apparata slozhnoi formy”, Kosmonavtika i raketostroenie, 2017, no. 5(98), 93–103