Bifurcation model of the laminar-turbulent transition near a flat wall
Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 114-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we describe a new mathematical model (bifurcational turbulence model) and argument why it's suitable for prediction of laminar and turbulent boundary layer characteristics. The model's distinguishing feature is that laminar-turbulent transition in medium arises as direct consequence of bifurcational properties of underlying RANS (Reynolds-averaged Navier–Stokes) equations which are closed in a specific way. The article is divided in three major parts. The first part describes RANS and second-order closure conditions along with premises that we use to obtain model equations in closed form. The second part is dedicated to the details of a particular turbulence model and its application to general shear layer problem. In the third part we consider turbulence transition in boundary layer over flat plate and present results of numerical simulations compared to experimental data for the case.
Keywords: Navier–Stokes equations
Mots-clés : RANS, laminar-turbulent transition.
@article{MM_2019_31_1_a6,
     author = {O. V. Troshkin and S. A. Kozlov and S. V. Fortova and V. V. Shepelev and I. V. Eriklintsev},
     title = {Bifurcation model of the laminar-turbulent transition near a flat wall},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {114--126},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_1_a6/}
}
TY  - JOUR
AU  - O. V. Troshkin
AU  - S. A. Kozlov
AU  - S. V. Fortova
AU  - V. V. Shepelev
AU  - I. V. Eriklintsev
TI  - Bifurcation model of the laminar-turbulent transition near a flat wall
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 114
EP  - 126
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_1_a6/
LA  - ru
ID  - MM_2019_31_1_a6
ER  - 
%0 Journal Article
%A O. V. Troshkin
%A S. A. Kozlov
%A S. V. Fortova
%A V. V. Shepelev
%A I. V. Eriklintsev
%T Bifurcation model of the laminar-turbulent transition near a flat wall
%J Matematičeskoe modelirovanie
%D 2019
%P 114-126
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_1_a6/
%G ru
%F MM_2019_31_1_a6
O. V. Troshkin; S. A. Kozlov; S. V. Fortova; V. V. Shepelev; I. V. Eriklintsev. Bifurcation model of the laminar-turbulent transition near a flat wall. Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 114-126. http://geodesic.mathdoc.fr/item/MM_2019_31_1_a6/

[1] W. Frost, T. Moulden, Handbook of Turbulence, v. 1, Fundamentals and applications, Plenum Press, 1977

[2] Zubarev D. N., Morozov V. G., Troshkin O. V., “Turbulence as a nonequilibrium phase transition”, Theoretical and Mathematical Physics, 92 (1992), 896–908 | DOI | MR | Zbl

[3] Hanjalic K., Launder B. E., “Fully developed asymmetric flow in a plane channel”, J. Fluid Mech., 16 (1972), 1119–1130

[4] Nevzglyadov V. G., “K femenologicheskoi teorii turbulentnosti”, DAN SSSR, 47:3 (1945), 169–173

[5] Dryden H. L., “Recent advances in the mechanics of boundary layer flow”, Advances in Applied Mechanics, v. 1, Academic Press, N.-Y., 1948, 1–40 | MR

[6] Reichardt H., “Uber die Geschwindigkeitsverteilung in einer geradlinigen Couettestromung”, Z. angew. Math. Mech., 36 (1956), 26–29 | DOI

[7] Murzinov I. N., “Laminarnyi pogranichnyi sloi na sfere v giperzvukovom potoke ravnovesno dissotsiiruiushchego vozdukha”, Izv. AN SSSR. MZhG, 1966, no. 2, 184–188

[8] Kuzminov A. V., Lapin V. N., Chernyi S. G., “Metod rascheta turbulentnikh techenii neszhimaemoi zhidkosti na osnove dvukhsloinoi k-e modeli”, Vicheslitelnie tekhnologii, 6:5 (2001), 73–86

[9] Lapin Y. V., Garbaruk A. V., Streletz M. H., “Algebraicheskie modeli turbulentnosti dlia pristennykh kanonicheskikh techenii”, Nauchno-tekhnich. vedomosti, 2004, no. 5, 23–36

[10] Reynolds O., “On the Dynamical theory of incompressible viscous fluids and the determination of the criterion”, Phil. Trans. Roy. Soc. London. Ser. A, 186 (1894), 123–164 | DOI | MR

[11] Roe P. L., “Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[12] Schlichting G., Boundary layer theory, McGraw-Hill College, 1969 | MR

[13] Langley Research Center Turbulence Modeling Resource, http://turbmodels.larc.nasa.gov/flatplate_sa.html