Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_1_a4, author = {P. A. Lyhin and K. V. Toropetsky and V. N. Ulyanov and E. V. Usov and V. I. Chuhno}, title = {Transient thermal-nonequilibrium model for prediction of cutting removal during drilling of directional wells}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--102}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_1_a4/} }
TY - JOUR AU - P. A. Lyhin AU - K. V. Toropetsky AU - V. N. Ulyanov AU - E. V. Usov AU - V. I. Chuhno TI - Transient thermal-nonequilibrium model for prediction of cutting removal during drilling of directional wells JO - Matematičeskoe modelirovanie PY - 2019 SP - 85 EP - 102 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_1_a4/ LA - ru ID - MM_2019_31_1_a4 ER -
%0 Journal Article %A P. A. Lyhin %A K. V. Toropetsky %A V. N. Ulyanov %A E. V. Usov %A V. I. Chuhno %T Transient thermal-nonequilibrium model for prediction of cutting removal during drilling of directional wells %J Matematičeskoe modelirovanie %D 2019 %P 85-102 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_1_a4/ %G ru %F MM_2019_31_1_a4
P. A. Lyhin; K. V. Toropetsky; V. N. Ulyanov; E. V. Usov; V. I. Chuhno. Transient thermal-nonequilibrium model for prediction of cutting removal during drilling of directional wells. Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 85-102. http://geodesic.mathdoc.fr/item/MM_2019_31_1_a4/
[1] J.T. Ford, J.M. Peden, M.B. Oyeneyin et all., “Experimental Investigation of Drilled Cuttings Transport in Inclined Boreholes”, SPE Annual Technical Conference and Exhibition (1990), 197–206 | Zbl
[2] M. Kamyab, V. Rasouli, “Experimental and numerical simulation of cuttings transportation in coiled tubing drilling”, J. Natural Gas Science and Engineering, 29 (2016), 284–302 | DOI
[3] R.E. Osgouei, Determination of Cuttings Transport Properties of Gasified Drilling Fluids, Ph.D thesis, Middle East Technical University, Turkey, 2010, 236 pp.
[4] Q.T. Doan, M. Oguztoreli, Y. Masuda et all., “Modeling of Transient Cuttings Transport in Underbalanced Drilling (UBD)”, SPE Journal, 2:2 (2003), 160–170 | DOI
[5] S. Naganawa, T. Nomuro, “Simulating transient behavior of cuttings transport over whole trajectory of extended-reach well”, Asia Pacific Drilling Technology Conference and Exhibition (2006), Society of Petroleum Engineers, IADC/SPE 103923, 9 pp.
[6] P. Doron, D. Grancia, D. Barnea, “Slurry flow in horizontal pipes - experimental and modeling”, Int. J. Multiphase Flow, 13:4 (1987), 535–547 | DOI
[7] P. Doron, M. Simkhis, D. Barnea, “Flow of solid-liquid mixtures in inclined pipes”, Int. J. Multiphase Flow, 23:2 (1996), 273–283 | DOI
[8] P. Doron, D. Barnea, “Flow pattern maps for solid-liquid flow in pipes”, Int. J. Multiphase Flow, 22:2 (1997), 313–323 | DOI
[9] H. Cho, N. Shah, S. Osisanya, “A Three-Segment Hydraulic Model for Cuttings Transport in Coiled Tubing Horizontal and Deviated Drilling”, Journal of Canadian Petroleum Technology, 41:6 (2002), 32–39 | DOI
[10] T.N. Ofei, S. Irawan, “Modeling of pressure drop in eccentric narrow horizontal annuli with the presence of cuttings and rotating drillpipe”, Int. J. Oil, Gas and Coal Technology, 9:1 (2015), 39–60 | DOI
[11] T.N. Ofei, S.A. Alhemyari, “Computational Fluid Dynamics Simulation Of The Effect Of Drill Pipe Rotation On Cuttings Transport In Horizontal Wellbores Using A Newtonian Fluid”, International Field Exploration and Development Conference IFEDC 2015 (20–21 Sept. 2015), 1–8
[12] G.B. Wallis, One-dimensional two-phase flow, McGraw-Hill, 1969, 408 pp.
[13] J.F. Richardson, W.N. Zaki, “Sedimentation and fluidisation: Part I”, Chemical Eng. Research and Design, 75 (1997), 82–100 | DOI
[14] R. Clift, W. H. Gauvin, “Motion of Particles in Turbulent Gas Streams”, British Chemical Engineering, 16:2–3 (1971), 229–232
[15] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Courier Corporation, 2005, 381 pp.
[16] I. Machac, M. Balcar, Z. Lecjaks, “Creeping flow of non-Newtonian liquids through fluidized beds of spherical particles”, Chem. Eng. Sci., 41 (1986), 591–596 | DOI
[17] I. Machac, P. Mikulasek, I. Ulbrichova, “Non-Newtonian fluidisation of spherical particle beds”, Chem. Eng. Sci., 48 (1993), 2109–2118 | DOI
[18] R.P. Chhabra, Bubbles, Drops and Particles in Non-Newtonian Fluids, 2nd edition, Taylor Francis, 2007, 204 pp.
[19] F. Colebrock, “Turbulent flow in pipes with particular reference to the transition region between the smoth and rough pipe laws”, Journal of the Instr. of Civil Engineers, 1939, no. 4, 14–25
[20] P.L. Kirillov, V.P. Bobkov, A.V. Zhukov, Iu.S. Iurev, Spravochnik po teplogidravlicheskim raschetam v iadernoi energetike, v. 1, IzdAT, M., 2010, 776 pp.
[21] M.R. Malin, “Turbulent pipe flow of Herschel-Bulkley fluids”, International Communications in Heat and Mass Transfer, 25:3 (1998), 321–330 | DOI
[22] Crispulo Gallegos (ed.), Encyclopedia of Life Support Systems (EOLSS), Chapter 17, Eolss Publishers UK, Oxford, 2009
[23] J.P. Hartnett, B.K. Rao, “Heat transfer and pressure drop for purely viscous non-Newtonian fluids in turbulent flow through rectangular passages”, Heat and Mass Transfer, 21:5 (1987), 261–267
[24] A.V. Lykov, Teoriia teploprovodnosti, Vysshaia shkola, M., 1967, 600 pp.
[25] S. Whitaker, “Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles”, AIChE J., 18 (1972), 361–371 | DOI