Quantum modeling of the electrical double layer
Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 27-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the problems of calculating both stationary and dynamic diffuse double electric layer taking into account the quantum factor. The simulation of the selfconsistent field of the quantum mechanical double electric layer is carried out on the basis of the Schrödinger equation and its modification in the form of Madelung. The approximate solution of the equations of quantum mechanics and electric field is carried out by the finite difference method. An example of modeling a diffuse double electric layer for a gas plasma and a cryogenic solution of quantum particles is considered. The influence of the form factor of the initial distribution of plasma density, temperature, microscopic friction forces and the parameters of the computational method is studied.
Keywords: electrical double layer, quantum mechanics, Schrödinger equation, potential of Bohm, mathematical modeling.
@article{MM_2019_31_1_a1,
     author = {S. A. Nekrasov and D. N. Chernoivan},
     title = {Quantum modeling of the electrical double layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_1_a1/}
}
TY  - JOUR
AU  - S. A. Nekrasov
AU  - D. N. Chernoivan
TI  - Quantum modeling of the electrical double layer
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 27
EP  - 43
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_1_a1/
LA  - ru
ID  - MM_2019_31_1_a1
ER  - 
%0 Journal Article
%A S. A. Nekrasov
%A D. N. Chernoivan
%T Quantum modeling of the electrical double layer
%J Matematičeskoe modelirovanie
%D 2019
%P 27-43
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_1_a1/
%G ru
%F MM_2019_31_1_a1
S. A. Nekrasov; D. N. Chernoivan. Quantum modeling of the electrical double layer. Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/MM_2019_31_1_a1/

[1] B.V. Damaskin, O.A. Petrii, Elektrokhimiia, Vysshaia shkola, M., 1987, 295 pp.

[2] S.G. Maksimov, Problemy mikroskopicheskoi nereliativistskoi kvantovoi gidrodinamiki, avtoreferat dissert. kand. fiz.-mat. nauk, Mosk. gos. un-t im. M.V. Lomonosova. Kaf. teoreticheskoi fiziki, M., 2000

[3] G.D. Cohen, “Quantum Statistics and Liquid Helium-3 - Helium-4 Mixtures”, Science, 197:4298 (1977), 11–26 | DOI

[4] A.E. Dubinov, L.A. Senilov, “On the structure of the charged near-electrode sheath in a plasma with degenerate electrons”, Technical Physics. The Russian Journal of Applied Physics, 55:6 (2010), 799–806

[5] Iu.A. Lebedev, Elektricheskie zondy v plazme ponizhennogo davleniia

[6] Serge Luryi, “Quantum capacitance device”, Appl. Phys. Lett., 52:6 (1988), 501–503 | DOI

[7] M.E. Kompan, V.G. Malyshkin, “Predelnye emkostnye parametry grafenovykh elektrodov superkondensatorov. Kvantovye ogranicheniia”, Pisma v ZhTF, 41:8 (2015), 1–8

[8] N.L. Glinka, Obshchaia khimiia, Khimiia, L., 1986, 704 pp.

[9] N.P. Bogoroditskii, V.V. Pasynkov, B.M. Tareev, Elektrotekhnicheskie materialy, Energoatomizdat, Leningr. otd., L., 1985, 304 pp.

[10] V.P. Kuznetsov, “Puti i perspektivy razvitiia i primeneniia kondensatorov s dvoinym elektricheskim sloem (ionistorov)”, Elektron. tekhn., ser.5, Radiodetali i kompon., 1991, no. 4(85)

[11] S.A. Nekrasov, “Ion Transport in Electrolyte flux under Magnetic Field”, Russ. J. Electrochem., 49:4 (2013), 307–312 | DOI | DOI

[12] S.A. Nekrasov, “Calculating the Electrostatic Field in the Bulk of an Aqueous Solution”, Russian Journal of Physical Chemistry A, 86:11 (2012), 1730–1733 | DOI