Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_1_a0, author = {M. A. Lozhnikov}, title = {On a difference scheme on triangular meshes for gas dynamics equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--26}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_1_a0/} }
M. A. Lozhnikov. On a difference scheme on triangular meshes for gas dynamics equations. Matematičeskoe modelirovanie, Tome 31 (2019) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2019_31_1_a0/
[1] Popov I. V., Fryazinov I. V., “Method of adaptive artificial viscosity for gas dynamics equations on triangular and tetrahedral grids”, Mathematical Models and Computer Simulations, 5:1 (2013), 50–62 | DOI | MR | Zbl
[2] Samarskiy A. A., Popov Yu. P., Raznostnie metody resheniya zadach gasovoy dinamiki, Nauka, M., 1992
[3] Amosov A. A., Zlotnik A. A., “Difference schemes of second-order of accuracy for the equa-tions of the one-dimensional motion of a viscous gas”, USSR Computational Mathematics and Mathematical Physics, 27:4 (1987), 46–57 | DOI | MR | Zbl
[4] Popov A. V., Zhukov K. A., “An implicit finite-difference scheme for the unsteady motion of a viscous barotropic gas”, Numer. Methods and Programming, 14:4 (2013), 516–523
[5] Imranov F. B., Kobelkov G. M., Sokolov A. G., “Finite Difference Scheme for Barotropic Gas Equations”, Doklady Mathematics, 97:1 (2018), 58–61 | DOI | DOI | MR | Zbl
[6] Popov I. V., Fryazinov I. V., Stanichenko M. Yu., Taimanov A. V., “Difference schemes on triangular and tetrahedral grids for Navier-Stokes equations of incompressible fluid”, Mathematical Models and Computer Simulations, 2:3 (2010), 281–292 | DOI | MR | Zbl
[7] Samarskiy A. A., Koldoba A. V., Poveshenko Yu. A., Tishkin V. F., Favorskiy A. P., Raznostnie skhemy na neregulyarnyh setkah, Minsk, 1996
[8] Kulikovskiy A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskiye voprosy chislennogo resheniya giperbolicheskih sistem uravneniy, Nauka, M., 2001
[9] Ladyzhenskaya O. A., Matematicheskiye voprosy dinamiki vyazkoy neszhimayemoy zhydkosti, Nauka, M., 1970
[10] Geuzaine S., Remacle J.-F., “GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities”, Inter. Journal for Numerical Methods in Engineering, 79:11 (2009), 1309–1331 | DOI | MR | Zbl
[11] Balay S., Gropp W. D., McInnes L. C., Smith B. F., “Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries”, Modern Software Tools for Scientific Computing, eds. Arge E., Bruaset A. M., Langtangen H. P., Birkhauser, Boston, MA, 1997 | MR | Zbl
[12] Liska R., Wendroff B., Comparison of several difference schemes on 1D and 2D test problems for Euler equations, Tech. Rep. LA-UR-01-6225, LANL, Los Alamos, 2001