Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_12_a8, author = {B. V. Rogov and A. V. Chikitkin}, title = {About the convergence and accuracy of the method of iterative approximate factorization of operators of multidimensional high-accuracy bicompact schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {119--144}, publisher = {mathdoc}, volume = {31}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a8/} }
TY - JOUR AU - B. V. Rogov AU - A. V. Chikitkin TI - About the convergence and accuracy of the method of iterative approximate factorization of operators of multidimensional high-accuracy bicompact schemes JO - Matematičeskoe modelirovanie PY - 2019 SP - 119 EP - 144 VL - 31 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a8/ LA - ru ID - MM_2019_31_12_a8 ER -
%0 Journal Article %A B. V. Rogov %A A. V. Chikitkin %T About the convergence and accuracy of the method of iterative approximate factorization of operators of multidimensional high-accuracy bicompact schemes %J Matematičeskoe modelirovanie %D 2019 %P 119-144 %V 31 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2019_31_12_a8/ %G ru %F MM_2019_31_12_a8
B. V. Rogov; A. V. Chikitkin. About the convergence and accuracy of the method of iterative approximate factorization of operators of multidimensional high-accuracy bicompact schemes. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 119-144. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a8/
[1] A. V. Shilkov, M. N. Gertsev, E. N. Aristova, S. V. Shilkova, “Metodika etalonnykh «line-by-line» raschetov atmosphernoi radiatsii”, Komp. issledov. i modelir., 4:3 (2012), 553–562
[2] V. B. Rozanov, G. A. Vergunova, E. N. Aristova et al., “Interaction of laser radiation with a low-density structured absorber”, JETP, 122:2 (2016), 256–276
[3] D. F. Baydin, E. N. Aristova, “3D hexagonal parallel code QuDiff for calculating a fast reactor's critical parameters”, Math. Models Comp. Simul., 8:4 (2016), 446–452 | MR
[4] B. V. Rogov, M. N. Mikhailovskaya, “Fourth-order accurate bicompact schemes for hyperbolic equations”, Dokl. Math., 81:1 (2010), 146–150 | MR | Zbl
[5] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Math. Models Comp. Simul., 4:1 (2012), 92–100 | MR | Zbl
[6] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Math. Models Comp. Simul., 5:3 (2013), 199–207 | MR | Zbl
[7] E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation”, Comp. Math. Math. Phys., 56:6 (2016), 962–976 | MR | MR | Zbl
[8] A. V. Chikitkin, B. V. Rogov, E. N. Aristova, “High-order accurate bicompact schemes for solving the multidimensional inhomogeneous transport equation and their efficient parallel implementation”, Dokl. Math., 94:2 (2016), 517–522 | MR | Zbl
[9] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comp. Math. Math. Phys., 53:2 (2013), 205–214 | MR | Zbl
[10] A. V. Chikitkin, B. V. Rogov, S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Appl. Numer. Math., 3 (2015), 150–163 | MR
[11] M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comp. Math. Math. Phys., 56:6 (2016), 947–961 | MR | Zbl
[12] M. D. Bragin, B. V. Rogov, “Iterative approximate factorization for difference operators of high-order bicompact schemes for multidimensional nonhomogeneous hyperbolic systems”, Dokl. Math., 95:2 (2017), 140–143 | MR | Zbl
[13] M. D. Bragin, B. V. Rogov, “Iterative approximate factorization of difference operators of high-order accurate bicompact schemes for multidimensional nonhomogeneous quasilinear hyperbolic systems”, Comp. Math. Math. Phys., 58:3 (2018), 295–306 | MR | Zbl
[14] B. V. Rogov, M. D. Bragin, “On spectral-like resolution properties of fourth-order accurate symmetric bicompact schemes”, Dokl. Math., 96:1 (2017), 339–343 | MR | Zbl
[15] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | MR | Zbl
[16] Watkins D. S., Fundamentals of matrix computations, Wiley Interscience, New York, 2002 | MR | Zbl
[17] B. V. Rogov, M. D. Bragin, “On the convergence of the method of iterative approximate factorization of difference operators of high-order accurate bicompact scheme for nonstationary three-dimensional hyperbolic equations”, Preprinty IPM im. M.V. Keldysha, 2018, 132, 16 pp. | DOI
[18] L. M. Skvortsov, “Diagonally implicit Runge-Kutta methods for stiff problems”, Comp. Math. Math. Phys., 46:12 (2006), 2110–2123 | MR
[19] L. M. Skvortsov, “Diagonalno neyavnye FSAL-metody Runge-Kutty dlya zhestkikh i differentsialno algebraicheskikh sistem”, Mat. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl