Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_12_a7, author = {A. V. Kolesnichenko}, title = {Modeling of linear response for quantum nonextensive system on dynamic external disturbance}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--118}, publisher = {mathdoc}, volume = {31}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a7/} }
TY - JOUR AU - A. V. Kolesnichenko TI - Modeling of linear response for quantum nonextensive system on dynamic external disturbance JO - Matematičeskoe modelirovanie PY - 2019 SP - 97 EP - 118 VL - 31 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a7/ LA - ru ID - MM_2019_31_12_a7 ER -
A. V. Kolesnichenko. Modeling of linear response for quantum nonextensive system on dynamic external disturbance. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 97-118. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a7/
[1] J. Havrda, F. Charvat, “Quantiication method of classiication processes. Concept of structural $\alpha$-entropy”, Kybernetika, 3 (1967), 30–35 | MR | Zbl
[2] Z. Daroczy, “Generalized information functions”, Inf. Control., 16:1 (1970), 36–51 | MR | Zbl
[3] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | MR | Zbl
[4] A. Renyi, “On measures of entropy and information”, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, v. 1, University California Press, Berkeley, 1961, 547–561 | MR
[5] A. Renyi, Probability Theory, North-Holland Publ. Co, Amsterdam, 1970, 573 pp. | MR | Zbl
[6] E. M. F. Curado, C. Tsallis, “Generalized statistical mechanics: connection with thermodynamics”, J. Phys. A: Mathematical and General, 24:2 (1991), L69–72 | MR
[7] C. Beck, F. Schlogl, Thermodynamics of chaotic systems: an introduction, Cambridge University Press, Cambridge, 1993, 286 pp. | MR
[8] C. Tsallis, R. Mendes, A. Plastino, “The role of constraints within generalized nonextensive statistics”, Physica A, 261 (1998), 543–554
[9] C. Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York, 2009, 382 pp. | MR | Zbl
[10] A. Plastino, A. R. Plastino, “On the universality of thermodynamics' Legendre transform structure”, Phys. Lett. A, 226:5 (1997), 257–263 | MR | Zbl
[11] U. Tirnakli, D. F. Torres, “Exact and approximate results of non-extensive quantum statistics”, Eur. J. Phys. B, 14:4 (2000), 691–698
[12] E. K. Lenzi, R. S. Mendes, “Collisionless Boltzmann equation for systems obeying Tsallis distribution”, Eur. J. Phys. B, 21:3 (2001), 401–406
[13] S. Abe, “Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Renyi-entropy-based theory”, Physica A: Statistical Mechanics and its Applications, 300:3 (2001), 417–423 | MR | Zbl
[14] R. G. Zaripov, Samoorganizatsiy i neobratimosty v neekstensivnykh sistemakh, Fen, Kazan, 2002, 251 pp.
[15] R. G. Zaripov, Printsipy neekstensivnoy statisticheskoy mekhaniki i geometrii mer besporyadka i poryadka, Izd. Kazanskogo Gostekhuniversiteta, Kazan, 2010, 404 pp.
[16] M. Gell-Mann, C. Tsallis, Nonextensive Entropy-Interdisciplinary Applications, Oxford University Press, eds. Eds, 2004, 440 pp. | MR | Zbl
[17] A. V. Kolesnichenko, “K postroeniyu neadditivnoy termodinamiki slozhnykh sistem na osnove statistiki Kurado-Tsallisa”, Preprinty IPM im. M.V. Keldysha, 2018, 025, 40 pp.
[18] A. V. Kolesnichenko, “K konstruirovaniyu termodinamiki neadditivnykh sred na osnove statistiki Tsallisa–Mendesa–Plastino”, Preprinty IPM im. M.V. Keldysha, 2018, 023, 28 pp.
[19] A. V. Kolesnichenko, “Dvukhparametricheskiy entropiynyy funktsional Sharma–Mittala kak osnova semeystva obobshchennykh termodinanik neekstensivnykh system”, Mathematica Montisnigri, 42 (2018), 74–101
[20] A. V. Kolesnichenko, Statisticheskay mekhanika i termodinamika Tsallisa neadditivnykh system. Vvedenie v teoriiu i prilozheniia, Sinergetika: ot proshlogo k budushchemu, 87, LENAND, M., 2019, 360 pp.
[21] A. R. Plastino, M. Casas, A. Plastino, “A nonextensive maximum entropy approach to a family of nonlinear reaction-diffusion equations”, Phys. A: Statistical Mechanics and its Applications, 280:3 (2000), 289–303 | MR
[22] B. M. Boghosian, “Navier-Stocks Equations for Generalized Thermostatistics”, Bras. J. Phys., 29:1 (1999), 91–107
[23] A. V. Kolesnichenko, B. N. Chetverushkin, “Kinetic derivation of a quasihydrodinamic system of equations on the base of nonextensive statistics”, Russian Journal of Numerical Analysis and Mathematical Modelling, 28 (2013), 547–576 | MR | Zbl
[24] T. D. Frank, A. Daffertshofer, “Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics”, Phys. A: Statistical Mechanics and its Applications, 292:1 (2001), 392–410 | MR | Zbl
[25] N. Ito, C. Tsallis, “Specific heat of the harmonic oscillator within generalized equilibrium statistics”, Nuovo Cimento D, 11:6 (1989), 907–911
[26] P. H. Chavanis, L. Delfini, “Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model”, Eur. Phys. J. B, 69:3 (2009), 389–429
[27] A. V. Kolesnichenko, “Kriteriy termicheskoy ustoychivosti i zakon raspredeleniy chastits dlia samogravitiruiushchikh astro-fizicheskikh system v ramkakh statistiki Tsallisa”, Mathematica Montisnigri, 37 (2016), 45–75
[28] A. V. Kolesnichenko, “K razrabotke statisticheskoy termodinamiki i tekhniki fraktalnogo analiza dlya neekstensivnykh system na osnove entropii i razlichayushchey informatsii Ren'i”, Preprinty IPM im. M.V. Keldysha, 2018, 060, 44 pp.
[29] A. Esquivel, A. Lazarian, “Tsallis Statistics as a Tool for Studying Interstellar Turbulence”, Astrophys. J., 710:1 (2010), 125–132
[30] A. V. Kolesnichenko, M. Ya. Marov, “Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics”, Solar System Research, 48:5 (2014), 354–365 | MR
[31] A. V. Kolesnichenko, “Power Distributions for Self-Gravitating Astrophysical Systems Based on Nonextensive Tsallis Kinetics”, Solar System Research, 51:2 (2017), 127–144
[32] A. V. Kolesnichenko, “Modifikatsiya v ramkakh statistiki Tsallisa kriteriev gravitatsionnoy neustoychivosti astrofisicheskikh diskov s fraktalnoy strukturoy fazovogo prostranstva”, Mathematica Montisnigri, 32 (2015), 93–118
[33] A. V. Kolesnichenko, “On construction of the entropy transport model based on the formalism of nonextensive statistics”, Math. Mod. Comp. Simul., 6:6 (2014), 587–597 | MR
[34] A. Wehrl, “General properties of entropy”, Reviews of Modern Physics, 50:2 (1978), 221–260 | MR
[35] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1955, 325 pp. | MR | Zbl
[36] S. Abe, A. K. Rajagopal, “Validity of the Second Law in Nonextensive Quantum Thermodynamics”, Physical Review Letters, 91 (2003), 120601 | MR
[37] S. Abe, “Nonadditive generalization of the quantum Kullback–Leibler divergence for measuring the degree of purification”, Physical Review A, 68:3 (2003), 032302
[38] S. Abe, “Quantum q-divergence”, Physica A: Statistical Mechanics and its Applications, 344:3 (2004), 359–365 | MR
[39] S. Abe, “Geometric effect in nonequilibrium quantum thermodynamics”, Physica A: Statistical Mechanics and its Applications, 372:2 (2006), 387–392
[40] D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996, 375 pp. | MR | Zbl
[41] R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems”, J. Phys. Soc. Jap., 12:6 (1957), 570–586 | MR
[42] R. Kubo, M. Yokota, S. Nakajima, “Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance”, J. Phys. Soc. Jap., 12:11 (1957), 1203–1211 | MR
[43] E. K. Lenzi, R. S. Mendes, “Collisionless Boltzmann equation for systems obeying Tsallis distribution”, Eur. J. Phys. B, 21:3 (2001), 401–406
[44] E. K. Lenzi, R. S. Mendes, A. K. Rajagopal, “Green functions based on Tsallis nonextensive statistical mechanics: normalized q-expectation value formulation”, Physica A: Statistical Mechanics and its Applications, 286:3 (2000), 503–517 | MR | Zbl
[45] E. K. Lenzi, R. S. Mendes, A. K. Rajagopal, “Quantum statistical mechanics for nonextensive systems”, Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), 59:2 (1999), 1398–1407
[46] S. Abe, Y. Okamoto (eds.), Nonextensive Statistical Mechanicsand Its Applications, Chapter II, Lecture Notes in Physics, Springer Verlag, Berlin–New York, 2001 | MR
[47] S. Abe, “Axioms and uniqueness theorem for Tsallis entropy”, Physics Letters A, 271:1–2 (2000), 74–79 | MR | Zbl
[48] A. M. Gleason, “Measures on the closed subspaces of a Hilbert space”, Mathematics Journal (Indiana University), 6 (1957), 885–893 | MR | Zbl
[49] A. V. Kolesnivhenko, “K postroeniiu termodinamiki kvantovykh neekstensivnykh sistrm v ramkakh statistiki Tsallisa”, Preprinty IPM im. M.V. Keldysha, 2019, 016, 44 pp.
[50] E. T. Jaynes, “Information theory and statistical mechanics”, Statistical Physics, Brandeis Lectures, 3, 1963, 160 | MR
[51] A. V. Kolesnivhenko, “K vyvodu simmetrichnosti matritsy kineticheskikh koeffizientov Onzagera v ramkakh neekstensivnoy statisticheskoy mekhaniki Tsallisa”, Preprinty IPM im. M.V. Keldysha, 2019, 15, 24 pp.