Classification of the calculation methods of diffuse radiation configuration factors
Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents the results of generalizing the existing methods of determining the diffuse radiation configuration factors (CF) for radiation transfer calculation in the zone model of the system of bodies with the surfaces of complex form. Such problems arise while determining construction temperatures, surfaces illumination, constructing of realistic images and others in the different fields of science and technology: space, illumination engineering, building construction, power engineering, applied optics, computer graphics and so forth. The classification of the determining CF methods is proposed on the criterion of the sources of errors, which appear during calculations. Four classes of the methods are selected: exacts, special, numerical integration, and combined. The distribution of methods according to the classes is carried out. The base formulas and formulas for the numerical CF calculation are given. The derived classification allows users and developers of the computer programs of CF calculation to be oriented in the variety of methods and to select the most adequate of them for the solution of its own problem. In addition, it can be assumed as the basis of the construction of the generalized algorithm and program set of diffuse CF calculation for the broad variety of the tasks.
Keywords: mathematic methods, configuration factor, radiation heat transfer, computer graphics.
Mots-clés : illumination
@article{MM_2019_31_12_a4,
     author = {D. K. Vinokurov},
     title = {Classification of the calculation methods of diffuse radiation configuration factors},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {31},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a4/}
}
TY  - JOUR
AU  - D. K. Vinokurov
TI  - Classification of the calculation methods of diffuse radiation configuration factors
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 57
EP  - 70
VL  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a4/
LA  - ru
ID  - MM_2019_31_12_a4
ER  - 
%0 Journal Article
%A D. K. Vinokurov
%T Classification of the calculation methods of diffuse radiation configuration factors
%J Matematičeskoe modelirovanie
%D 2019
%P 57-70
%V 31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_12_a4/
%G ru
%F MM_2019_31_12_a4
D. K. Vinokurov. Classification of the calculation methods of diffuse radiation configuration factors. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 57-70. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a4/

[1] G. L. Pollak, “L'algebre des flux homogenes”, Transactions of the Institute of Energetics Academy of Science of USSR, 3:1–2 (1935), 53–75

[2] J. R. Howell, M. P. Menguc, R. Siegel, Thermal radiation heat transfer, 6th ed., CRC press; Taylor Francis Group, 2016, xxxiv+970 pp.

[3] M. F. Modest, Radiative Heat Transfer, 3rd ed., Elsevier Science, New York–San Francisco–London, 2013, xxii+882 pp.

[4] V. N. Adrianov, Osnovy radiatsionnogo I slozhnogo teploobmena, Energiia, M., 1972, 464 pp.

[5] A. G. Blokh, Iu. A. Zhuravlev, L. N. Ryzhkov, Teploobmen izlucheniem, Energoatomizdat, M., 1991, 432 pp.

[6] R. A. Herman, A Treatise on Geometrical Optics, C. J. Clay and Sons, Cambridge University Press Warehouse, London, 1900, x+344 pp.

[7] V. A. Fok, “Osveshchennost ot poverkhnostej proizvolnoj formy”: Fok V. A., Izbrannye trudy, Izd-vo S. Peterburgskogo universiteta, SPb, 2003, 389–405

[8] E. M. Sparrow, “A new and simpler formulation for radiative angle factors”, ASME Journal of Heat Transfer, 85:2 (1963), 81–88

[9] W. Nusselt, “Graphische bestimmung des winkelverhaltnisses bei der wärmestrahlung”, Zeitschrift des Vereins Deutscher Ingenieure (VDI Z.), 72 (1928), 673

[10] Z. Yamanouti, “On Geometrical Calculation of Illumination for Surface Sources”, Journal of the Illuminating Engineering Institute of Japan, 8:4 (1924), 293–301 | DOI

[11] H. C. Hottel, “Radiant heat transmission”, Heat Transmission, Chapter 4, 3rd ed., ed. W. H. McAdams, McGraw-Hill, New York, 1954

[12] A. F. Emery, O. Johannson, M. Lobo, A. Abrous, “A comparative study of methods for computing the diffuse radiation view factors for complex structures”, ASME Journal of Heat Transfer, 113:2 (1991), 413–422

[13] M. K. Gupta, K. B. Bumtariya, H.A Shukla, P. Patel, Z. Khan, “Methods for Evaluation of Radiation View Factor: A Review”, Materials Today: Proceedings, Part A, 4:2 (2017), 1236–1243 | DOI

[14] D. L. DiLaura, S. Santoro, “Nondiffuse Radiative Transfer 4: General Procedure for Planar Area Sources and Area Receivers”, Journal of the Illuminating Engineering Society, 26:1 (1997), 188–200 | DOI

[15] John R. Howell, A Catalog of Radiation Heat Transfer Configuration Factors, 3rd ed., University of Texas at Austin, 2012 http://www.thermalradiation.net/indexCat.html

[16] Peter Schröder, Pat Hanrahan, “On the form factor between two polygons”, Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH'93, ACM, New York, NY, USA, 1993, 163–164 | DOI

[17] A. Narayanaswamy, “An analytic expression for radiation view factor between two arbitrarily oriented planar polygons”, International Journal of Heat and Mass Transfer, 91 (2015), 841–847 | DOI

[18] G. N. Walton, Calculation of Obstructed View Factors by Adaptive Integration, NISTIR 6925, National Institute of Standards and Technology, Washington, 2002

[19] Photometry or On The Measure and Gradations of Light, Color, and Shade, English translation by D.L. DiLaura, Illuminating Engineering Society, 2001, 680 pp.

[20] G. P. Mitalas, D. G. Stephenson, Fortran IV Program to Calculate Radiant Interchange Factors, DBR-25, NRC, Ottawa, Canada, 1966

[21] Z. Yamauti, Geometrical Calculation of Illumination, No 148, Researches of the Electrotechnical Laboratory (Ministry of Communications, Tokyo), 1924

[22] S. C. Mishra, A. Shukla, V. Yadav, “View factor calculation in the 2-D geometries using the collapsed dimension method”, International Communications in Heat and Mass Transfer, 35:5 (2008), 630–636 | DOI

[23] V. M. Zaletaev, IU. V. Kapinos, O. V. Surguchev, Raschet teploobmena kosmicheskogo apparata, Mashinostroenie, M., 1979, 208 pp.

[24] G. N. Walton, Algorithms for Calculating Radiation Viewfactors Between Plane Convex Polygons With Obstructions, NBSIR 86-3463, 1986 | Zbl

[25] A. Mavroulakis, A. Trombe, “A new semianalytical algorithm for calculating diffuse plane view factors”, ASME Journal of Heat Transfer, 120:1 (1998), 279–282

[26] J. W. Baughn, G. A. Monroe, “Optical measurements of the radiation configuration factor”, AIAA 3rd Thermophysics Conference (Los Angeles, California, June 24–25, 1968), AIAA Paper No68-769, 7 pp.

[27] H. Rathjen, “A personal look back on Thermal Software evolution within the past 36 years”, 28th European Space Thermal Analysis Workshop, 2014, 127–139

[28] R. Farrell, “Determination of configuration factors of irregular shape”, ASME Journal of Heat Transfer, 98:2 (1976), 311–313

[29] N. N. Kalitkin, E. A. Alshina, Chislennye metody, v. 2 kn., v. 1, Chislennyj analiz, Izdatelskij tsentr “Akademiia”, M., 2013, 304 pp.