Model for investigation the physical properties of the system of charged particles taking into account the external magnetic field and friction force
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 132-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, a modified Verlet numerical scheme was obtained. This scheme is intended to solve the equations of motion of charged particles immersed in an external stationary environment and a uniform magnetic field, for example, charged particles of a condensed substance in a buffer plasma (dusty plasma). The influence of the environment on the particle dynamics is described by friction force. The particle dynamics are also affected by interparticle interaction and an external uniform magnetic field. To obtain the Verlet scheme, the coordinates and velocities of the particles are decomposed into a Taylor series, taking into account the Lorentz force and the friction force. All Taylor series expansion terms that give the same order of accuracy were taken into account. In the obtained numerical scheme, the time step of modeling does not depend on the magnitude of the magnetic field, but is determined only by the internal physical properties of the system under consideration, which is important when modeling an ensemble of charged particles with taking into account electromagnetic fields. The paper solved a test problem for which particle trajectories obtained based on the conventional and modified Verlet scheme for different values, both the friction parameter and the magnetic field parameter, were compared. Based on the analysis of the dependence of the maximum relative deviation of the coordinate on the time step, the time step is independent of the magnetic field in the Taylor expansion scheme, while in the inverse Verlet scheme there is such dependence.
Keywords: molecular dynamics method, Verlet algorithm, external homogenous magnetic field, dusty plasma.
@article{MM_2019_31_11_a9,
     author = {K. N. Dzhumagulova and T. S. Ramazanov and R. U. Masheyeva and M. N. Jumagulov},
     title = {Model for investigation the physical properties of the system of charged particles taking into account the external magnetic field and friction force},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {132--144},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a9/}
}
TY  - JOUR
AU  - K. N. Dzhumagulova
AU  - T. S. Ramazanov
AU  - R. U. Masheyeva
AU  - M. N. Jumagulov
TI  - Model for investigation the physical properties of the system of charged particles taking into account the external magnetic field and friction force
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 132
EP  - 144
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a9/
LA  - ru
ID  - MM_2019_31_11_a9
ER  - 
%0 Journal Article
%A K. N. Dzhumagulova
%A T. S. Ramazanov
%A R. U. Masheyeva
%A M. N. Jumagulov
%T Model for investigation the physical properties of the system of charged particles taking into account the external magnetic field and friction force
%J Matematičeskoe modelirovanie
%D 2019
%P 132-144
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a9/
%G ru
%F MM_2019_31_11_a9
K. N. Dzhumagulova; T. S. Ramazanov; R. U. Masheyeva; M. N. Jumagulov. Model for investigation the physical properties of the system of charged particles taking into account the external magnetic field and friction force. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 132-144. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a9/

[1] V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, G. E. Morfill, “Complex (dusty) plasmas: Current status, open issues, perspectives”, Phys. Rep., 421 (2005), 1 | DOI | MR

[2] V. E. Fortov, G. E. Morfill, Complex and Dusty Plasmas: From Laboratory to Space, CRC Press, 2009, 440 pp.

[3] E. Bonnetier, L. Jakabcin, S. Labbe and A. Replumaz, “Numerical simulation of a class of models that combine several mechanisms of dissipation: Fracture, plasticity, viscous dissipation”, J. Comp. Phys., 271 (2014), 397 | DOI | MR | Zbl

[4] T. Ott, M. Bonitz, P. Hartmann, Z. Donko, “Effect of correlations on heat transport in a magnetized strongly coupled plasma”, Phys. Rev. E., 83 (2011), 046403 | DOI

[5] T. Ott, H. Loewen, M. Bonitz, “Magnetic field blocks two-dimensional crystallization in strongly coupled plasmas”, Phys. Rev. Lett., 111 (2013), 065001 | DOI

[6] G. Uchida, U. Konopka, G. Morfill, “Wave dispersion relation of two-dimensional plasma crystals in a magnetic field”, Phys. Rev. Lett., 93 (2004), 155002 | DOI

[7] T. Ott, H. Loewen, M. Bonitz, “Dynamics of two-dimensional one-component and binary Yukawa systems in a magnetic field”, Phys. Rev. E, 89 (2014), 013105 | DOI

[8] F. B. Baimbetov, T. S. Ramazanov, K. N. Dzhumagulova, E. R. Kadyrsizov, O. F. Petrov, A. V. Gavrikov, “Modelling of dusty plasma properties by computer simulation methods”, J. Phys. Math. Gen., 39 (2006), 4521–4525 | DOI

[9] K. N. Dzhumagulova, T. S. Ramazanov, Y. A. Ussenov, M. K. Dosbolayev, R. U. Masheyeva, “Study of the dustfree region near an electric probe and the dust particles oscillations in dusty plasma”, Contrib. Plasma Phys., 53 (2013), 419 | DOI

[10] K. N. Dzhumagulova, T. S. Ramazanov, R. U. Masheyeva, “Velocity autocorrelation functions and diffusion coefficient of dusty component in complex plasmas”, Contrib. Plasma Phys., 52 (2012), 182 | DOI

[11] K. N. Dzhumagulova, T. S. Ramazanov, R. U. Masheyeva, “Diffusion coefficient of three-dimensional Yukawa liquids”, Phys. Plasmas, 20 (2013), 113702 | DOI

[12] Q. Spreiter, M. Walter, “Classical molecular dynamics simulation with the Velocity Verlet algorithm at strong external magnetic fields”, J. Comput. Phys., 152 (1999), 102 | DOI | Zbl

[13] K. N. Dzhumagulova, R. U. Masheyeva, T. S. Ramazanov, Z. Donko, “Effect of magnetic field on the velocity autocorrelation and the caging of particles in two-dimensional Yukawa liquids”, Phys. Rev. E, 89 (2014), 033104 | DOI

[14] T. Ott, M. Bonitz, Z. Donko, “Effect of correlations on heat transport in a magnetized strongly coupled plasma”, Phys. Rev. E, 92 (2015), 063105 | DOI

[15] M. Bonitz, Z. Donko, T. Ott, H. Kahlert, P. Hartmann, “Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas”, Phys. Rev. Lett., 105 (2010), 055002 | DOI